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ABSTRACT

Inferring substitutable and complementary items is an important

and fundamental concern for recommendation in e-commerce web-

sites. However, the item relationships in real-world are usually

heterogeneous, posing great challenges to conventional methods

that can only deal with homogeneous relationships. More specif-

ically, for this problem, there is a lack of in-depth investigation

on 1) decoupling item semantics for modeling heterogeneous item

relationships, and at the same time, 2) incorporating mutual in-

fluence between different relationships. To fill this gap, we pro-

pose a novel solution, namely Decoupled Graph Convolutional

Network (DecGCN), to solve the problem of inferring substitutable

and complementary items. DecGCN is designed to model item sub-

stitutability and complementarity in separated embedding spaces,

and is equipped with a two-step integration scheme, where in-

herent influences between 1) different graph structures and 2)

different item semantics are captured. Our experiments on three

real-world datasets demonstrate that DecGCN is more effective

than the state-of-the-art baselines for the problem at hand. We

also conduct offline and online A/B tests on large-scale indus-

trial data, where the results show that DecGCN is effective to

be deployed in real-world applications. We release the codes at

https://github.com/liuyiding1993/CIKM2020_DecGCN.
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1 INTRODUCTION

With the proliferation of e-commerce platforms (e.g., Amazon,

JD.com, Taobao), rich information about various kinds of items (i.e.,

products) has become available. These items are explicitly or implic-

itly connected via different types of relationships, e.g., co-viewed

or co-purchased by the same user, forming massive item graphs,

where the items are represented as nodes and their relationships

are represented as edges. Exploiting such graph structure is of great

significance to understand the characteristics of items, which can

facilitate a wide spectrum of applications, such as Recommender

Systems [7, 8, 22, 24, 41] and online advertisements [36–38].

Among the multiplex relationships between items, substitutable

and complementary relationships are two representatives, as they

are mostly interested and explored by e-commerce users [17]. For

example, an online shopper would often view different T-shirts

(i.e., substitutable items) before he/she buys one, and would also be

interested in a matching pair of jeans (i.e., complementary items).

Substitutable and complementary items of users’ recently inter-

acted (e.g., clicked or purchased) products are two main sources

for candidate generation, which is one of the most crucial stage in

recommender systems [17, 24]. Thus, it is of great benefit to study

the problem of inferring substitutable and complementary items.

In the past decade, extensive studies are conducted for effectively

solving this problem [12, 17, 19, 26, 32–35], and themajority of them

focus on modeling the content features of items (e.g., visual and

textual content) using different methods, such as Latent Dirichlet

Allocation (LDA) [17] and Variational Auto-Encoder (VAE) [19]

, while much less attention is paid to better perceive the graph

structure. Recent advances on Network Embedding [1, 16] and

Graph Neural Networks (GNNs) [2, 10, 27, 39] have shown powerful

capacity on modeling graph data, and thus shed new light on this

task, where a handful of studies leverage the graph structure of

items and achieve promising results [26, 29, 33]. Notably, Ying et

al. [29] is the first to apply Graph Neural Networks (GNNs) for

inferring substitutable items, and shows superior performance in

real-world production environments, which can be attributed to its

unified modeling of both item features and local graph structures.

However, despite the progress made by the previous studies, the

heterogeneity of item relationships is still largely under-exploited.

To be more specific, most of the existing literature miss to incorpo-

rate relationship heterogeneity from the following two perspectives:

• Decouplingmultifaceted item semantics. Some existingmod-

els usually rely on a single shared representation for each item

(e.g., the set of latent topics [1, 17]) to infer both types of rela-

tionships (i.e., substitute and complement), while neglecting the

fact that different relationships stretching out from an item could
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result from the expression of its different aspects [4, 14, 15]. Con-

sidering the substitutability and complementarity as two aspects

of item, it is non-robust and noisy to simply fuse item substi-

tutability and complementarity together in a single shared item

representation [15]. To this end, it would be promising to decouple

item substitutability and complementarity that can respectively

model the two relationships.

• Modeling influences between different item semantics. In-

tuitively, the complementary information of an item could also

provide important clues about its substitutability, and vice versa.

For example, if two t-shirts are substitutable, i.e., having similar

style and size, they are likely to share many common comple-

mentary items (e.g., jeans).

To address these two limitations, we contribute a novel Decou-

pled Graph Convolutional Network (DecGCN) model, for the in-

ference of substitutable and complementary items. To address the

first limitation, the DecGCN is designed to include two separated

sub-GCNs that decouple the item semantics. More specifically, the

two sub-GCNs are trained separately and output two embedding

vectors for each item, which respectively encode its substitutability

and complementarity. Compared with conventional methods that

are built up on shared item representations (i.e., directly fuse dif-

ferent item semantics), DecGCN is of more flexible when dealing

with item relationships with high complexity and variety.

To address the second limitation, we introduce a two-step knowl-

edge integration process in DecGCN, which considers the mutual

influence between different graph structures and different item

semantics. In particular, the designed integration process consists

of structural integration and semantic integration. We first incorpo-

rate structural integration in each convolutional layer of the model,

where a co-attention mechanism is adopted to attentively inte-

grate both substitute and complement neighborhoods to formulate

item embeddings. After that, we introduce semantic integration,

which enables knowledge transfer between the two different se-

mantics, such that the item substitutability and complementarity

can mutually benefit each other for better modeling the two types

of relationships. Our contributions can be summarized as follows:

• We are the first to propose a GCN method that decouples item

semantics for inferring substitutable and complementary items.

• We propose a novel two-step knowledge integration scheme in

Decoupled GCN. We propose to 1) integrate two types of local

neighborhoods using co-attention mechanism, and 2) integrate

two types of semantics (i.e., substitutability and complementarity)

via knowledge transfer mechanism.

• Extensive experiments on three public datasets show that our

method achieves better performance than the state-of-the-art

baselines. We also conduct A/B test on the production data of

JD.com and demonstrate the superiority of our method for the

real-world applications.

2 RELATEDWORK

2.1 The Inference of Substitutable and
Complementary Items

Previous studies usually formulate the Substitutable and Comple-

mentary Items inference problem as a supervised link prediction

problem [17, 19, 26, 34], and try to 1) adopt different representa-

tion learning methods for perceiving item features, and 2) build

a prediction model upon the item representations to infer substi-

tutable and complementary relationships. For example, McAuley

et al. [17] propose the system Sceptre, which uses Latent Dirichlet

Allocation to learn the topic distribution of items from users’ re-

views, and exploits logistic regression to predict substitutable and

complementary relationships based on the learnt representations.

Recently, a handful of studies start to pay more attention on

exploiting Graph Neural Networks [29] for this problem. Notably,

Ying et al. [29] is the first to deploy Graph Convolutional Network

(GCN) in real production environment, and achieves remarkable

performance for inferring substitutable contents. Another recent

proposal is Cen et al. [1], which aims at modeling attributed mul-

tiplex networks, and shows the state-of-the-art performance for

inferring substitutable and complementary items.

2.2 Graph Neural Networks

Graph Neural Networks [6, 9, 13, 21] have achieved state-of-the-art

performance in modeling graph based data. However, most of the

conventional GNN methods are designed for homogeneous graphs.

In real-world applications, the graph usually comes with multi-

types of nodes and edges, also widely known as heterogeneous

information network (HIN) [20].

Heterogeneous Graph Neural Networks. To deal with the mul-

tiple types of nodes and edges in the heterogeneous graph, some

Heterogeneous Network Embedding methods [3, 16, 20] and Het-

erogeneous Graph Neural Networks [1, 2, 5, 23, 25, 30, 31] based

approaches are proposed recently. For example, Zhang et al. [31]

propose a heterogeneous graph neural network model called Het-

GNN, which jointly considers node heterogeneous contents encod-

ing, type-based neighbors aggregation, and heterogeneous infor-

mation combination to obtain the final node embedding. Wang et

al. [25] propose a Heterogeneous Graph Attention Network based

framework called HAN, which leverages attention mechanism to

aggregate features from meta-path based neighbors hierarchically.

Disentangled Graph Neural Networks. Recently, some initial

work [4, 14, 15] reveal that a node could be multifaceted, and at-

tempt to learn multiple representations for each node. For exam-

ple, Epasto et al. [4] propose Splitter, an unsupervised embedding

method that allows nodes in a graph to have multiple embeddings

to better encode their participation in multiple overlapping com-

munities. Liu et al. [14] propose a polysemous embedding approach

for modeling multiple facets of nodes, and Ma et al. [15] propose

a disentangled graph convolutional network (DisenGCN) to learn

disentangled node representations. These solutions could provide

robustness and explainable to latent node representations. How-

ever, they still miss to explicitly model the mutual influences among

different aspects.

3 PROBLEM FORMULATION

In e-commerce sites, the multiple relationships among items form

a heterogeneous graph. In this paper, our task is to generate high-

quality representations of items that can be used for inferring sub-

stitutable and complementary items.
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3.1 Heterogeneous Graph

We represent the multiple relationships among items as a heteroge-

neous graph G = (V, E), whereV is the set of 𝑛 nodes (i.e., items),

and the edges E = E(𝑠) ∪ E (𝑐) represent substitutable (i.e., E(𝑠) )

and complementary (i.e., E(𝑐) ) relationships between nodes. The

nodes are associated with attributes X = {x1, x2, ..., x𝑛}, where x𝑖
represents the attributes (e.g., metadata or content information) of

node 𝑣𝑖 . Note that we consider the relationships as undirected edges

in this paper. We can consider that the heterogeneous graph G is

composed of two subgraphs:

• Substitutable item-item subgraph. This subgraph is denoted

as G(𝑠) = (V, E(𝑠) ), where the edges E(𝑠) represent the substi-

tuable relationships between items. If two items 𝑣𝑖 and 𝑣 𝑗 are
substitutable (e.g., frequently co-viewed), there will be a substitu-

able edge 𝑒
(𝑠)
𝑖 𝑗 between them.

• Complement item-item subgraph. This subgraph is denoted

as G(𝑐) = (V, E(𝑐) ), where the edges E(𝑐) represent the com-

plement relationships between items. If two items 𝑣𝑖 and 𝑣 𝑗 are
complement (e.g., frequently co-purchased), there will be a com-

plement edge 𝑒
(𝑐)
𝑖 𝑗 between them.

3.2 Problem Definition

Following previous studies [17], we formulate the Substitutable and

Complementary Items inference task as a link prediction problem.

Our goal is to leverage both the nodes’ attributes as well as the struc-

ture of the heterogeneous graph to generate high-quality embed-

dings of items, which are then used for inferring substitutable and

complementary items. In this paper, to model the multifaceted se-

mantics of nodes, we propose to learn two sets of latent node embed-

dings for V , denoted as Z(𝑠) = {z
(𝑠)
1 , z

(𝑠)
2 , ..., z

(𝑠)
𝑛 |z

(𝑠)
𝑖 ∈ R1×𝑑 , 𝑖 =

1, 2..., 𝑛} and Z
(𝑐) = {z

(𝑐)
1 , z

(𝑐)
2 , ..., z

(𝑐)
𝑛 |z

(𝑐)
𝑖 ∈ R1×𝑑 , 𝑖 = 1, 2..., 𝑛},

which are decoupled representations of nodes that can be used

for inferring substitutable and complementary items, respectively.

Here, 𝑑 represents the dimensionality of the latent embeddings.

Definition 1 (The substitutable and complementary

items inference problem.). Given the heterogeneous graph

G = (V, E), which contains items as nodes V (associated with at-

tributes X) and their substitute and complement relationships E =
{E (𝑠) , E(𝑐) } as edges, the problem aims to learn two sets of embed-

dingsZ(𝑠) andZ(𝑐) for the nodesV , such that the probability of nodes

𝑣𝑖 and 𝑣 𝑗 being substitutable or complementary can be estimated by

𝑝 (𝑠) (z
(𝑠)
𝑖 , z

(𝑠)
𝑗 ) and 𝑝 (𝑐) (z

(𝑐)
𝑖 , z

𝑐)
𝑗 ), where 𝑝

(𝑠) and 𝑝 (𝑐) represent the

prediction function (e.g., dot product) for the substitutable and com-

plementary relationships respectively.

4 METHODOLOGY

In this section, we elaborate the proposed solution. In particular,

Section 4.1 introduces the preliminaries of GCN; Section 4.2 presents

the overall architecture of DecGCN; Sections 4.3 and 4.4 introduce

the two-step knowledge integration paradigm in detail.

4.1 Graph Convolutional Network

Our method is based on a widely-used GCNmethod, namely Graph-

Sage [10, 29]. It uses localized convolutional modules to generate

multi-layer embeddings for nodes, which is depicted as follows.

Convolutional layer. The core of GCN is a localized convolution

operation. For each node 𝑣𝑖 , the convolution operation is designed to
aggregate and process the information of its neighborhood (denoted

as N𝑖 ). In particular, it first aggregates the representations of a set

of its neighbors using a pooling operation (e.g., a element-wise

mean or weighted sum), where a non-linear layer is subsequently

employed to formulate the output embedding of 𝑣𝑖 . Formally, the

convolution operation in the 𝑙-th convolutional layer on 𝑣𝑖 can be

defined as

h
𝑙
𝑖 = 𝜎 (W𝑙 · CONCAT(h𝑙−1𝑖 , h𝑙N𝑖

)), (1)

h
𝑙
N𝑖

= 𝛾 ({h𝑙−1𝑗 , 𝑗 ∈ N𝑖 } (2)

where h
𝑙
N𝑖

denotes the aggregated feature vector of N𝑖 , 𝛾 is the

aggregation (i.e., pooling) operation, W𝑙 represents the weight

matrix and 𝜎 represents the activation function (i.e., ReLU). A GCN

model usually stacks multiple convolutional layers (i.e., 𝑙={1,2,...,L})
over the shallow feature embeddings (i.e., h0𝑖 ), which extract high-

level information of both the item features and graph structure into

the final-layer node embedding (i.e., z𝑖 = h
𝐿
𝑖 ).

4.2 Overview of Decoupled GCN

We propose a Decoupled GCN with a carefully designed knowledge

integration process. The overview of our model is illustrated in

on the left side of Figure 1, where the backbone of our proposed

method is two separated sub-GCNs, which output two sets of item

embeddings as

Z
(𝑠) = GCN(𝑠) (G(𝑠) ,X) and Z

(𝑐) = GCN(𝑐) (G(𝑐) ,X) (3)

Note that the two sub-GCNs take different subgraph structures (i.e.,

G(𝑠) and G(𝑐) ) and item attributes X as inputs, and produce decou-

pled embeddings (i.e., Z(𝑠) and Z
(𝑐) ) in different semantics. Com-

pared with those methods that simply fuse different item semantics

in a shared item representation, our method encodes different item

semantics in different latent space, and thus is more flexible for

modeling complex substitute and complement relationships.

However, separated sub-GCNs are unable to capture the influ-

ence between the two types of relationships. Therefore, to further

incorporate such information, we propose to jointly optimize the

two sub-GCNs with a two-step knowledge integration paradigm,

which contains:

• structural integration, considering the influence between two

types of subgraph structures (i.e., G(𝑠) and G(𝑐) ) on modeling

item semantics, and

• semantic integration, considering the influence between two types

of semantics (i.e., z
(𝑠)
𝑖 and z

(𝑐)
𝑖 ) for each item.

Structural integration. To consider the mutual influence between

G(𝑠) and G(𝑐) , we propose to integrate additional subgraph struc-

ture in both sub-GCNs. More formally, we consider the modeling

of subgraph G(𝑠) (or G(𝑐) ) can be further refined by leveraging
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Figure 1: Themodel architecture. The left part shows the overall framework of our proposedmethod,where co-attentive convo-

lutions are stacked to aggregate item substitutability and complementarity from local neighborhoods, followed by knowledge

transfer networks to consider their mutual influences. The middle part shows the detailed implementations of structural

integration and semantic integration. The right part shows how the co-attention between neighborhoods is computed.

additional subgraph G(𝑐) (or G(𝑠) ). Thus, we reformulate Eq. (3) as

Z̃
(𝑠) = GCN(𝑠) (G(𝑠) |G (𝑐) ,X) (4)

Z̃
(𝑐) = GCN(𝑐) (G(𝑐) |G(𝑠) ,X) (5)

where Z̃(𝑠) and Z̃
(𝑐) represent the item embeddings after introduc-

ing the structural integration. Here, we use the notation G(𝑠) |G(𝑐)

to denote the different exploitation of G(𝑠) in the sub-GCN when

G(𝑐) is also observed. By doing this, we expect the extra subgraph

structure integrated in each sub-GCN to provide auxiliary informa-

tion for better modeling the item semantics.

Semantic integration. To consider the mutual influence between

z
(𝑠)
𝑖 and z

(𝑐)
𝑖 , we define an integration function 𝜂 (𝑠) and 𝜂 (𝑐) that

learns to refine different item semantics as

Ẑ
(𝑠) = 𝜂 (𝑠) (Z̃(𝑠) , Z̃(𝑐) ) and Ẑ

(𝑐) = 𝜂 (𝑐) (Z̃(𝑐) , Z̃(𝑠) ) (6)

where Ẑ
(𝑠) and Ẑ

(𝑐) represent the refined representations. This

allows useful knowledge to be extracted and transfer between dif-

ferent item semantics.

In the following subsections, we introduce the implementations

of the structural and semantic integration schemes in detail.

4.3 Structural Integration: Multifaceted
Co-Attentive Neighborhood Aggregation

The basic intuition of structural integration is that the item rela-

tionships represented by different subgraphs may have inherent

influence to each other. To incorporate this intuition into the frame-

work of GCN, we propose a co-attentive neighborhood aggregation

strategy in each convolutional layer, which is inspired by Dynamic

Co-attention Network (DCN) [28]. It allows the convlutional layer

to simultaneously perceive the local structures of both substitute

and complement subgraphs. Next, we show the proposed aggrega-

tion strategy in Z̃
(𝑠) = GCN(𝑠) (G(𝑠) |G(𝑐) ,X) as an example, and

Z̃
(𝑐) = GCN(𝑐) (G(𝑐) |G(𝑠) ,X) can be computed similarly.

Definitions of neighbor embeddings. We first denote the sub-

stitute and complement neighbors of 𝑣𝑖 as N
(𝑠)
𝑖 and N

(𝑐)
𝑖 , respec-

tively. In each convolutional layer, we define the stacked substi-

tute neighbor embeddings as two matrix H
(𝑠)
𝑠 ∈ R |N

(𝑠 )
𝑖 |×𝑑 and

H
(𝑠)
𝑐 ∈ R |N

(𝑐 )
𝑖 |×𝑑 , respectively. Note that the neighbor embedding

vectors (i.e., the row vectors) in both matrices are substitute em-

beddings, which represent their substitutability. In other words, we

attempt to aggregate the same type of item semantics from different

types of neighborhoods. In the following, we omit the superscripts

of H
(𝑠)
𝑠 and H

(𝑠)
𝑐 , and use H𝑠 and H𝑐 instead, respectively.

The co-attention process. The co-attention between H𝑠 and H𝑐

is an alternative updating process, as depicted in the right part of

Figure 1, which contains three steps:

• In the first step, we compute the attention scores of N
(𝑐)
𝑖 over

N
(𝑠)
𝑖 (denoted as A𝑐 ) and N

(𝑠)
𝑖 over N

(𝑐)
𝑖 (denoted as A𝑠 ) re-

spectively as

A𝑐 = softmax(H𝑐H
�
𝑠 ), and A𝑠 = softmax(H𝑠H

�
𝑐 ) . (7)

• In the second step, by leveraging A𝑐 , we are able to integrate

the influence of H𝑠 with H𝑐 , to formulate the attended represen-

tations of N
(𝑐)
𝑖 (denoted as H̃𝑐 ) as

H̃𝑐 = [H𝑐 ;A𝑐H𝑠 ] (8)

Here, [; ] represents row-wise concatenation of two matrices.

• In the thrid step, we integrate Ĥ𝑐 back to H𝑠 to enrich the em-

beddings of the neighbors in N
(𝑠)
𝑖 as

H̃𝑠 = [H𝑠 ;A𝑠 H̃𝑐 ] (9)
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Finally, the aggregated neighborhood representation can be com-

puted using mean-pooling as hN𝑖
= 𝑚𝑒𝑎𝑛_𝑝𝑜𝑜𝑙𝑖𝑛𝑔(H̃𝑠 ), which

operates over the row vectors of H̃𝑠 .

Compared to the aggregate method (Equation 2) in GCN, the co-

attention scheme in our methhod allows the embeddings of N
(𝑠)
𝑖

(i.e., H̃𝑠 ) to also carry the information of N
(𝑐)
𝑖 . We incorporate the

co-attention scheme into each convolutional layers of GCN(𝑠) , such

that the final output z̃
(𝑠)
𝑖 and would contain high-level information

of both types of its local subgraph structures.

4.4 Semantic Integration: Knowledge Transfer
between Decoupled Node Representations

The structural integration allows each type of item semantics to

be aggregated on different subgraph structures. However, the de-

coupled item embeddings z̃
(𝑠)
𝑖 and z̃

(𝑐)
𝑖 are still represented in two

different latent spaces, where their mutual influence might be crit-

ical but still absent in the current model. To this end, we further

propose a semantic integration scheme, which enables useful se-

mantic information to be transferred across the two embeddings.

Direct transfer of item semantics. Concretely, we design a sim-

ple yet effective knowledge transfer scheme to refine the two repre-

sentations z̃
(𝑠)
𝑖 and z̃

(𝑐)
𝑖 . To integrate the knowledge from z̃

(𝑐)
𝑖 into

z̃
(𝑠)
𝑖 , we leverage a knowledge extraction neural network, which is

denoted as 𝑓𝑐→𝑠 (·). We use 𝑓𝑐→𝑠 (·) to extract transferable informa-

tion from z̃
(𝑐)
𝑖 , and apply it to z̃

(𝑠)
𝑖 as

ẑ
′(𝑠)
𝑖 = (1 − 𝛼 ′)z̃

(𝑠)
𝑖 + 𝛼 ′𝑓𝑐→𝑠 (z̃

(𝑐)
𝑖 ) (10)

where ẑ
′(𝑠)
𝑖 represents the augmented substitute embedding of

𝑣𝑖 and 𝛼 ′ represents the weight of the integration. Similarly, we

can integrate the knowledge from z̃
(𝑠)
𝑖 into z̃

(𝑐)
𝑖 , using another

knowledge extraction network 𝑓𝑠→𝑐 , as

ẑ
′(𝑐)
𝑖 = (1 − 𝛼 ′)z̃

(𝑐)
𝑖 + 𝛼 ′𝑓𝑠→𝑐 (z̃

(𝑠)
𝑖 ) (11)

Back transfer. In addition, inspired by Dual Learning [11] and

CycleGAN [40], we further consider the “back transfer” of the item

semantics. We assume that the embedding augmentation ẑ
′(𝑐)
𝑖 can

be transferred back to further improve the quality of ẑ
′(𝑠)
𝑖 . To this

end, we extend Eq. (10) and Eq. (11) as

ẑ
(𝑠)
𝑖 = (1 − 𝛼 − 𝛽)z̃

(𝑠)
𝑖 + 𝛼 𝑓𝑐→𝑠 (z̃

(𝑐)
𝑖 ) + 𝛽 𝑓𝑐→𝑠 (ẑ

′(𝑐)
𝑖 ) (12)

ẑ
(𝑐)
𝑖 = (1 − 𝛼 − 𝛽)z̃

(𝑐)
𝑖 + 𝛼 𝑓𝑠→𝑐 (z̃

(𝑠)
𝑖 ) + 𝛽 𝑓𝑠→𝑐 (ẑ

′(𝑠)
𝑖 ) (13)

where 𝛼 and 𝛽 are scalars for the combination. Alternatively, we can

interpret the “back transfer” as a cycle consistency constrain [40]

posed on 𝑓𝑠→𝑐 and 𝑓𝑐→𝑠 , forcing them to be inverse of each other.

It is worth noting that, compared with direct fusion of multiple

item semantics, e.g., z̃
(𝑠)
𝑖 + z̃

(𝑐)
𝑖 , our semantic integration scheme

leverages additional modules (i.e., 𝑓𝑠→𝑐 and 𝑓𝑐→𝑠 ) to accomplish

knowledge transfer, which has lower risk at undermining the de-

coupling between different item semantics.

4.5 Model Optimization & Prediction

Optimization. To train DecGCN model, we apply a commonly-

used graph-based loss for each sub-GCN, which encourages nearby

Table 1: Statistics of the datasets.

Amazon
JD

Beauty Clothing Electronics

Items 114,792 54,311 115,617 4,046,866

Total edges 5,079,630 889,972 3,641,208 136,052,828

Sub. edges 2,932,446 596,722 1,452,188 84,409,430

Com. edges 2,147,184 293,250 2,189,020 51,643,398

nodes to have similar representations. For optimizing z𝑖 in each

sub-GCN, the loss can be formally defined as

J (z𝑖 ) = − log(𝜎 (z�𝑖 z𝑗 )) −𝑄 · E𝑗 ′∼𝑃𝑛 (𝑖) [log(𝜎 (−z
�
𝑖 z𝑗 ′ ))] (14)

where 𝑗 is a sampled nearby node (e.g., neighbor), 𝑃𝑛 (𝑖) is a negative
sampling distribution overV ,𝑄 is the number of negative samples,

and 𝜎 is the sigmoid function. The final loss function of DecGCN

can be formulated as a multi-task loss:

J =
1

𝑛
J (ẑ

(𝑠)
𝑖 , ẑ

(𝑐)
𝑖 ) = J (ẑ

(𝑠)
𝑖 ) + J (ẑ

(𝑐)
𝑖 ) (15)

where 𝑛 is the number of nodes, J (ẑ
(𝑠)
𝑖 , ẑ

(𝑐)
𝑖 ) is the loss function

for node 𝑣𝑖 , J (ẑ
(𝑠)
𝑖 ) and J (ẑ

(𝑐)
𝑖 ) are computed as Eq. (14).

Prediction. After the optimization, we can employ the learned em-

beddings of items via DecGCN to infer substitutes and complements.

The prediction score of 𝑣𝑖 and 𝑣 𝑗 being substitutable or complemen-

tary can be respectively computed as 𝑝 (𝑠) (ẑ
(𝑠)
𝑖 , ẑ

(𝑠)
𝑗 ) = 𝜎 (ẑ

(𝑠)
𝑖 ẑ

(𝑠)�
𝑗 )

and 𝑝 (𝑐) (ẑ
(𝑐)
𝑖 , ẑ

(𝑐)
𝑗 ) = 𝜎 (ẑ

(𝑐)
𝑖 ẑ

(𝑐)�
𝑗 ).

5 EXPERIMENTS

In this section, we conduct experiments, and anticipate the experi-

mental results to answer the following research questions:

• RQ1: Does DecGCN outperforms state-of-the-art models on all

the datasets? How much is the improvement?

• RQ2: What is the impact of the structural integration and seman-

tic integration in our method?

• RQ3: What are the effects of the key hyperparameters of our

model on the performance?

• RQ4: Canwe draw any insight or interpretations from ourmodel?

• RQ5: Is DecGCN effective to be deployed in real-world scenarios?

5.1 Experimental Settings

Datasets. Our experiments are conducted on three public datasets

collected from Amazon: Beauty, Clothing and Electronics, which

are available publicly and have been widely used in literature [17,

18, 34]. We follow previous work [17] to construct substitute and

complement subgraphs by considering the “also-viewed” and “also-

bought” as substitute and complement relationships, respectively.

For each item, we use its categories, and brand as features. More-

over, we further include a large-scale industrial dataset, which is

collected from JD.com. We also include shop and product keywords

as features for the JD data. Details of the data are listed in Table 1.

Baselines. We compare our framework with following state-of-

the-art methods:

• GraphSage [9]. This is a widely-used inductive GCN based

model [29]. We follow the idea of PinSage [29] and Sceptre [17],

which learns a shared topic distribution for inferring substitutes

and complements. In particular, we use a single GraphSage to
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model the two types of edges, and output a shared latent embed-

ding for each item. Its convolution can be redefined as

h
𝑙
𝑖 = 𝜎 (W𝑙 · CONCAT(h𝑙−1𝑖 , h𝑙

N
(𝑠 )
𝑖

, h𝑙
N

(𝑐 )
𝑖

)) (16)

Separated non-linear layers are applied on the shared embedding

to finalize the two representations for each item.

• PolyGCN& PolyGAT [14]. PolyGCN uses two separated GCNs

(i.e., GraphSage) for modeling substitutes and complements, as

indicated by Eq. (3).We also include PolyGAT as a baseline, where

Graph Attention Network (GAT) [21] is used as the base model.

• FuseGCN. This is a simple variant of PolyGCNmodel, which has

two separated models to produce two sets of item embeddings.

However, each GCN of FuseGCN take two subgraphs as input,

where the convolution operation is defined as Eq. (16).

• HAN [25]. This is a state-of-the-art GNN method for hetero-

geneous graph embedding. Similar to FuseGCN, we have two

separated HAN models that take two subgraphs as input, and

output substitutable and complementary embeddings of items.

• DisenGCN [15]. This model is originally proposed to disentangle

node semantics for homogeneous graph. In our case, we explic-

itly consider the substitutability and complementarity as two

disentangled semantics.

• GATNE-I [1]. This model is a state-of-the-art method for model-

ing attributed multiplex heterogeneous network. For each node,

it leverages separate GCNs to learn multiple node embeddings

w.r.t. different types of relations.

• DecGCN. This is our proposed method. We use DecGCN/SE

and DecGCN/ST to represent the degenerated DecGCN without

semantic and structural integration, respectively.

We conduct link prediction to validate the effectiveness of the

models. For each node (i.e., item), we randomly sample one edge

for each type of relationships (i.e., substitute and complement) to

construct the test data, and use the rest as the training data. After

training the models, we report their performance for link prediction

task on the test data. For each item, as previous did [17], we fuse

its ground truth with N (i.e., 1000) sampled negative instances (i.e.,

items) and rank them using different models. The performances are

evaluated by three metrics: MRR@K, HR@K and NDCG@K, for

each of which the average value over all items is reported.

5.2 Implementation Details

We implement all the methods with Euler1, which is a GNN library

based on Tensorflow2. To deploy our model for online candidate

generation, we first compute and store the embedding vectors of

all candidate items. For the offline experiments, all the models can

be trained within few hours on four NVIDIA Tesla P40 GPUs. To

deploy the model for online candidate generation, we use Faiss3 to

efficiently retrieve substitutable or complementary items based on

approximate nearest neighbor search w.r.t. the prediction score.

Parameter settings. We set the dimension of each feature embed-

ding as 16, and the item embedding as 128 for all the convolutional

layers. For the GCN-based methods, we stack two convolutional

layers, each of which aggregates 5 sampled neighbors for each type

1https://github.com/alibaba/euler
2https://www.tensorflow.org/
3https://ai.facebook.com/tools/faiss/

Table 2: Performance comparison on Amazon Beauty.

Beauty Substitute Complement

MRR@10 HR@10 NDCG@10 MRR@10 HR@10 NDCG@10

GraphSage 0.225 0.515 0.340 0.238 0.550 0.364

PolyGCN 0.357 0.664 0.487 0.368 0.642 0.490

FuseGCN 0.310 0.623 0.445 0.360 0.681 0.506

PolyGAT 0.330 0.689 0.495 0.280 0.671 0.450

HAN 0.390 0.693 0.531 0.368 0.704 0.534

DisenGCN 0.421 0.700 0.554 0.363 0.637 0.491

GATNE-I 0.426 0.729 0.569 0.439 0.691 0.566

DecGCN/SE 0.410 0.702 0.540 0.416 0.684 0.543

DecGCN/ST 0.405 0.712 0.548 0.394 0.670 0.526

DecGCN 0.459∗ 0.747∗ 0.593∗ 0.471∗ 0.716∗ 0.593∗

Table 3: Performance comparison on Amazon Clothing.

Clothing Substitute Complement

MRR@10 HR@10 NDCG@10 MRR@10 HR@10 NDCG@10

GraphSage 0.126 0.318 0.199 0.149 0.368 0.234

PolyGCN 0.202 0.462 0.306 0.195 0.429 0.290

FuseGCN 0.212 0.471 0.316 0.226 0.496 0.336

PolyGAT 0.279 0.555 0.397 0.257 0.513 0.366

HAN 0.248 0.526 0.363 0.243 0.499 0.352

DisenGCN 0.330 0.618 0.459 0.248 0.517 0.363

GATNE-I 0.302 0.583 0.425 0.298 0.556 0.411

DecGCN/SE 0.300 0.587 0.425 0.285 0.549 0.400

DecGCN/ST 0.294 0.578 0.417 0.263 0.526 0.375

DecGCN 0.342∗ 0.631∗ 0.472∗ 0.327∗ 0.600∗ 0.450∗

Table 4: Performance comparison on Amazon Electronics.

Electronics Substitute Complement

MRR@10 HR@10 NDCG@10 MRR@10 HR@10 NDCG@10

GraphSage 0.184 0.451 0.287 0.188 0.424 0.281

PolyGCN 0.231 0.538 0.354 0.219 0.459 0.317

FuseGCN 0.238 0.542 0.360 0.240 0.506 0.351

PolyGAT 0.288 0.565 0.407 0.239 0.462 0.334

HAN 0.270 0.547 0.387 0.230 0.459 0.327

DisenGCN 0.287 0.587 0.416 0.221 0.456 0.318

GATNE-I 0.379 0.692 0.521 0.296 0.555 0.409

DecGCN/SE 0.354 0.674 0.497 0.284 0.541 0.396

DecGCN/ST 0.335 0.659 0.478 0.267 0.524 0.377

DecGCN 0.400∗ 0.713∗ 0.546∗ 0.311∗ 0.583∗ 0.429∗

of edge. In DecGCN, we use two 3-layer Multi-Layer Perceptrons

(MLPs) as 𝑓𝑠→𝑐 and 𝑓𝑐→𝑠 , where ReLU functions are used after the

first two layers. For the model optimization, we set the learning

rate as 1e-4 and batch size as 512 for all the methods, and train the

models for 20 epochs using Adam optimizer on all datasets. More

details can be found in the released codes.

5.3 Overall Performance (RQ1)

The experimental comparisons of DecGCN with its variants and

the baselines are presented in Tables 2, 3 and 4, where all the exper-

imental results are obtained by an average of 5 repeat runs and “∗”

indicates the statistically significant improvements (i.e., two-sided

t-test with p < 0.01) over the best baseline. Tables show the overall

performance of different methods on the three Amazon datasets,

respectively. In the tables, the boldfaced and underlined values

represent the best and the second best performance among the

compared methods. From the results, we observe that our proposed
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(a) Substitute (B) (b) Substitute (C) (c) Substitute (E)

Figure 2: Varying the number of latent dimensions (i.e., 𝑑).

Table 5: Varying the size of sampled neighbors in DecGCN.

Substitutes Complements

Dataset Number of neighbors HR@10 NDCG@10 HR@10 NDCG@10

B

(5) 0.703 0.550 0.677 0.544

(5, 5) 0.747 0.593 0.716 0.593

(5, 10) 0.765 0.619 0.727 0.605

(10, 5) 0.772 0.627 0.728 0.610

C

(5) 0.550 0.393 0.519 0.368

(5, 5) 0.631 0.472 0.600 0.450

(5, 10) 0.620 0.455 0.599 0.436

(10, 5) 0.644 0.490 0.617 0.465

E

(5) 0.632 0.454 0.486 0.339

(5, 5) 0.713 0.546 0.583 0.429

(5, 10) 0.722 0.560 0.572 0.422

(10, 5) 0.724 0.562 0.600 0.453

DecGCN significantly outperforms all the baseline methods, w.r.t.

to all the evaluation metrics. For example, on the task of inferring

substitutable items, DecGCN achieves better performance than the

GATNE-I by at least 5.5% on all the datasets w.r.t. MRR@10; It also

outperforms the state-of-the-art heterogeneous GNN method, i.e.,

HAN, by 7.7%, 19.9% and 30.3% on the three datasets, respectively,

on the HR@10 metric. The results for inferring complementary

items are qualitatively similar. This indicates that DecGCN can

better identify substitutes and complements w.r.t. query items.

5.4 Ablation Study (RQ2)

Tables 2, 3 and 4 also show the comparison results among different

variants of DecGCN, i.e., DecGCN/SE, DecGCN/ST and DecGCN,

which depict the effectiveness of our proposed structural and se-

mantic integration paradigms. First, we can see from the tables

that both DecGCN/SE and DecGCN/ST can beat PolyGCN by a

large margin. For example, on Electronics dataset, the relative im-

provements of DecGCN/ST over PolyGCN are at least 22.4% and

14.2% on all metrics, for inferring substitutes and complements,

respectively. This is because that PolyGCN models substitute and

complement subgraphs separately, while DecGCN/SE, DecGCN/ST

try to carefully integrate them for modeling each type of the sub-

graphs. Therefore, we can conclude that the structural and semantic

integration can better leverage the substitute and complement in-

formation, i.e., which allows them to facilitate the modeling of both

semantics. Moreover, the results also reveal that DecGCN has better

performance than both DecGCN/SE and DecGCN/ST, which shows

that the two integration schemes can work as a whole to bring

superiority to the DecGCN model.

5.5 Hyperparameter Analysis (RQ3)

We further conduct experiments while varying the key hyperparam-

eters of DecGCN. First, we vary the number of latent dimensions

(i.e., 𝑑) for item embeddings from 32 to 512. Figure 2 illustrates

Table 6: Performance comparison on JD.com.

JD.com Substitute Complement

PolyGCN GATNE-I DecGCN PolyGCN GATNE-I DecGCN

MRR@10 0.461 0.535 0.553 0.526 0.566 0.569

HR@10 0.842 0.894 0.902 0.894 0.892 0.921

NDCG@10 0.633 0.716 0.733 0.712 0.724 0.746

the results for inferring substitutes on all the three datasets w.r.t.

NDCG@10. The results for inferring complements are similar and

thus omitted. We can see that the performance of different methods

increases when setting larger 𝑑 . For example, on all the datasets,

the NDCG@10 values of DecGCN increase by more than 25.0% for

inferring substitutes, when adjusting 𝑑 from 64 to 512. Moreover,

we can find out that our DecGCN method consistently outperforms

PolyGCN and GraphSage. For example, on the task of inferring sub-

stitutes, it is able to achieve higher NDCG@10 values than PolyGCN

by over 9.8%, 19.6% and 20.4% on the three datasets, respectively.

The improvements of DecGCN over GATNE-I is relatively small,

especially when 𝑑 = 256 and 𝑑 = 512.

We also investigated the impact of the neighborhood size in

DecGCN. In particular, we use DecGCNs with different number of

neighbors, denoted as (5), (5, 5), (5, 10), (10, 5). For example, (5, 10)

means to aggregate 10 two-hop neighbors and 5 one-hop neighbors

in the model. We use B, C and E to denote Beauty, Clothing and Elec-

tronics datasets, respectively. The results in Table 5 show that that

1) one-layer DecGCN has the worst performance (worse than (5,5)

by 5.4%, 12.8% and 11.4% on the three datasets, respectively, w.r.t.

both HR@10 and NDCG@10), as it only aggregates the information

of one-hop neighbors for each item; 2) the DecGCN models with (5,

10) and (10, 5) are better than (5,5), which indicate that including

more neighbors can provide more information for the modeling;

3) the DecGCN with (10, 5) has the best performance, especially

better than (5, 10), which indicates that the one-hop neighbors are

more important than the two-hop neighbors in the model.

5.6 Analysis of Model Components (RQ4)

We conduct in-depth analysis of model components in DecGCN,

which aim at providing more useful insights of the model. We

conclude our key findings: 1) Co-attention vs. self-attention.

We study two variants of structural integration schemes, i.e., co-

attention or self-attention. Using self-attention in structural in-

tegration means the importance of each neighbor is derived by

those neighbors with the same type. Experiments demonstrate

that co-attention can achieve more than 3% relative improvements

over self-attention on all the datasets w.r.t. to both HR@10 and

NDCG@10. This tells us that the attention across different types of

neighbors can provide more useful information for the model. 2)

Variants of semantic integration. We investigate two variants

of our semantic integration paradigm, i.e., SE-forward and SE-cycle,

Here, SE-forward means we only consider the forward transfer in

the semantic integration process, as formulated in Eq. (10) and Eq.

(11), and SE-cycle is to consider both forward transfer and backward

transfer (as shown in Eq. (12) and Eq. (13)). The results show that

SE-cycle is able to achieve slightly better performance (over 1.2%

and 2.4% on HR@10 and NDCG@10) than SE-forward for inferring

substitutes, while no significant improvements are observed for

inferring complements.
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5.7 Offline and Online A/B Testing (RQ5)

For the offline A/B testing, we compare PolyGCN, GATNE-I and

DecGCN on the large-scale industrial JD.com dataset. As shown in

Table 1, the JD.com dataset contains over 4 million items, 84 mil-

lion substitute relations and 51 million complement relations. The

parameters are set the same as in Section 5.1. The results in Table 6

show that DecGCN outperform the two baselines on both inference

tasks. Compared with GATNE-I, DecGCN is able to achieve better

performance by 0.9%–5.6% and 0.5%–6.1% for inferring substitutes

and complements, respectively, w.r.t. all evaluation metrics.

For the online A/B testing, we deploy DecGCN and the strongest

baseline GATNE-I in the Candidate Generationmodule in the online

Recommender System in JD.com for one month (from June 2020

to July 2020). For each request, we use the model to generate can-

didates, and merge them with other candidate generation sources

for re-ranking. Online experiments show that our method DecGCN

significantly outperforms the strongest baseline method GATNE-I

by 3.6% (p-value < 0.01) in Click-Through Rate. In addition, we

observe 0.3% improvement on browsing depth (i.e., the depth of

scrolling recommendation lists).

6 CONCLUSION

In this paper, we propose an effective decoupled Graph Convolu-

tional Network for the task of inferring substitutable and comple-

mentary items. The propose DecGCN is able to learn item substi-

tutability and complementarity as separated embeddings vectors,

where mutual influence between different graph structures and

item semantics are further captured. Experiments on three public

datasets and A/B testing on a real-world industrial recommender

system demonstrate the remarkable performance of our solution.
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