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ABSTRACT
Multi-scenario Learning to Rank is essential for Recommender Sys-
tems, Search Engines and Online Advertising in e-commerce por-
tals where the ranking models are usually applied in many scenar-
ios. However, existing works mainly focus on learning the rank-
ing model for a single scenario, and pay less attention to learning
ranking models for multiple scenarios. We identify two practical
challenges in industrial multi-scenario ranking systems: (1) The
Feedback Loop problem that the model is always trained on the
items chosen by the ranker itself. (2) Insufficient training data for
small and new scenarios. To address the above issues, we present
ZEUS, a novel framework that learns a Zoo of ranking modEls for
mUltiple Scenarios based on pre-training on users’ spontaneous
behaviors (e.g., queries which are directly searched in the search
box and not recommended by the ranking system). ZEUS decom-
poses the training process into two stages: self-supervised learn-
ing based pre-training and fine-tuning. Firstly, ZEUS performs self-
supervised learning on users’ spontaneous behaviors and gener-
ates a pre-trainedmodel. Secondly, ZEUS fine-tunes the pre-trained
model on users’ implicit feedback in multiple scenarios. Extensive
experiments on Alibaba’s production dataset demonstrate the ef-
fectiveness of ZEUS, which significantly outperforms state-of-the-
art methods. ZEUS averagely achieves 6.0%, 9.7%, 11.7% improve-
ment in CTR, CVR andGMV respectively than state-of-the-artmethod.
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1 INTRODUCTION

Recommender Systems, Search Engines and Online Advertis-
ing are playing significant roles in E-commerce companies (e.g.,
Amazon, Alibaba, JD.com) [14–16, 25, 50, 53]. For example, in Al-
ibaba, one of the leading E-commerce companies in the world, the
search and recommender systems servemore than 0.8 billion users,
and contribute over a trillion dollars of Gross Merchandise Vol-
ume (GMV) (i.e., the total sales value for merchandise sold) in 2020.
Industrial search and recommender systems usually consist of two
stages: The first stage is retrieval (or candidate generation) [3, 7,
26, 30, 41], which selects hundreds or thousands of items as candi-
dates from millions or billions of items. The second stage is rank-
ing [7, 50], which predicts the ranking scores of the selected candi-
dates and returns top-ranked items. In this paper, we focus on the
Learning to Rank (LTR) problem in the ranking stage. LTR aims to
learn a ranking model which scores the candidate items given the
context information. Depending on the type of the item and con-
text information, a typical ranking task in e-commerce could be:
(1) Intent Recommendation, when the item is a query; (2) Product
Recommendation, when the item is a product; (3) Product Search,
when the item is a product and the context information is a query.

Existing industrial LTR approaches, such as traditional machine
learning models (e.g., LR [19, 31], GBDT [18, 46]) and deep neural
networks based approaches (DNN [7], Wide & Deep [6], DIN [50],
DIEN [49], DMT [15]), usually assume that the data are in the
same distribution and focus on learning the ranking model based
on users’ implicit feedback data in a single scenario. However, in
real-world platforms such as Alibaba, the ranking models usually
serve in different scenarios. For example, as shown in Figure 1, In-
tent Recommendation is widely used in different scenarios (such as
Homepage, Search Discovery, landing page from Affiliated APPs,
Taobao Special Price) in Alibaba’s Taobao 1 app, which is one of
the largest online shopping application in the world. The training
data in different scenarios may come from different distributions
because the users and items may differ greatly. Training scenario-
specific ranking model only based on the data in each scenario
is not suitable for small or new scenarios where feedback data is

1www.taobao.com
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Scenario 1: Homepage Scenario 2: Search Discovery Scenario 3: Affiliated APPs Scenario 4: Taobao Sepcial Price

Figure 1: Multi-Scenario Intent Recommender System in Alibaba. The queries in in the blue boxes are recommended intents.

very limited, while simplymixing all the data and training a shared
ranking model cannot capture the characteristics of each scenario.

Consequently, Multi-scenario Learning to Rank, which aims to
capture both the commonalities and scenario-specific characteris-
tics of multiple scenarios, is essential in real-world web services.
Designing a Multi-Scenario Ranking system faces two challenges:
• The Feedback Loop Problem. Existing LTR approaches usu-

ally train the ranking model based on users’ implicit feedback
on the items, which are selected by the old ranking model. The
biased exposure of items will lead to the Feedback Loop Prob-
lem [39] in industrial ranking systems, where popular items be-
come even more popular and long-tail items become even less
popular. Such phenomenon will make ranking models generate
increasingly biased results over time. Therefore how to address
the feedback loop problem is a critical issue in industrial ranking
systems.

• Insufficient training data for small andnew scenarios. State-
of-the-art LTR approaches are based on DNNs with millions or
even billions of parameters [6, 7, 15, 49, 50]. In real-world plat-
forms, many small and new scenarios have rather limited data.
Training giant neural networks solely based the scenario’s own
data may lead to overfitting and inferior performance.
Some pioneering studies [5, 22, 37] model the Multi-Scenario

LTR as a multi-task problem and focus on learning the relation-
ships of the training data in multiple scenarios. However, such
methods only utilize users’ implicit feedback (e.g., clicked queries
from the Intent Recommender System) and neglect users’ sponta-
neous behaviors (e.g., directly searched queries in the search box)
in the application, therefore they may suffer from severe feedback
loop problem. For example, for the e-commerce search engine in
Alibaba, there are two types of query sources: users’ spontaneously
searched queries (i.e., the users directly search the queries in the
search box, e.g., 𝑞1, 𝑞3, 𝑞𝑡 in Figure 2) and users’ clicked queries
that are recommended by the Multi-scenario Intent Recommender
System (e.g., 𝑞2, 𝑞4 in Figure 2). For the e-commerce search en-
gine in Taobao, users’ spontaneously searched queries and clicked
queries in the Multi-scenario Intent Recommender System con-
tribute about 73% and 27% respectively. In this paper, we find that
modeling users’ large-scale spontaneous behaviors is extremely
important for multi-scenario ranking.

To address these problems, we propose ZEUS, a novel frame-
work that can jointly learn a Zoo of ranking models for multiple
scenarios based on pre-training on users’ spontaneous behaviors.
As illustrated in Figure 2, the training procedure of ZEUS con-
sists of two stages: self-supervised learning based pre-training and
fine-tuning. In each of these stages, we use the Sequential Inter-
est Model, which models users’ interest based on the input fea-
tures (e.g., sequential behaviors), as the ranking model. The key
idea of ZEUS is exploiting pre-training to improve the learning of
the Sequential Interest Model. In the first stage, ZEUS performs
self-supervised learning on users’ spontaneous behaviors and gen-
erates a task-agnostic pre-trained model. Specifically, We define
a pretext task called Next-Query Prediction that aims to predict
the user’s next spontaneous searched query, which is the ideal
query that the Intent Recommender System should recommend.
This pre-training stage can improve the understanding of users’
search behaviors. In the fine-tuning stage, ZEUS firstly captures
the commonalities of different scenarios by fine-tuning the pre-
trained model on users’ feedback in multiple scenarios simultane-
ously, and thenmodels the scenario-specific characteristics of each
scenario by further fine-tuning using the implicit feedback data in
each scenario. Extensive experiments on the industrial Alibaba’s
Multi-Scenario Intent Recommendation dataset demonstrate the
effectiveness of ZEUS.

Our major contributions are as follows:
• We highlight the significance of pre-training on users’ sponta-

neous behaviors, which can alleviate the long-standing Feed-
back Loop problem in learning ranking models, solve the insuf-
ficient training data problem in small and new scenarios, and
improve the ranking performance in all scenarios.

• Wepresent a novel framework ZEUS,which learns a Zoo of rank-
ing modEls for mUltiple Scenarios based on pre-training.

• We conduct extensive experiments and demonstrate that ZEUS
significantly outperforms state-of-the-art baselines for ranking
in multiple scenarios (e.g., large, small and new scenarios). ZEUS
averagely increases the CTR, CVR and GMV by 6.0%, 9.7%, 11.7%
respectively, and has been deployed in the commercial Multi-
Scenario Intent Recommendation System in Taobao, contribut-
ing billions of dollars in revenue for Alibaba each year.
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Figure 2: The training procedure of ZEUS. It utilizes Self-supervised Learning based pre-training and fine-tuning for ranking.

2 RELATEDWORK
2.1 Learning to Rank
Learning to Rank, which aims to learn a ranking model, is a signifi-
cant task in industrial applications, such as recommender systems,
search engines, online advertising, and so on. Traditional machine
learning models, such as Logistic Regression (LR) [19, 31] and Gra-
dient Boosting Decision Tree (GBDT) [12, 18, 46], are popular and
successful methods for learning ranking models in industrial sys-
tems. In recent years , Deep Neural Networks based methods, such
as DNN [7] and Wide & Deep [6], have achieved appealing perfor-
mance in ranking. These methods follow the Embedding & MLP
paradigm, where large-scale sparse features are firstly embedded
into low dimensional vectors, and then concatenated together to
fed into the multilayer perceptron (MLP) to learn the nonlinear
relations among features. State-of-the-art LTR methods find the
effectiveness of extracting users’ interest from their historical be-
haviors for ranking. To be specific, DIN [50] uses attention mech-
anism to learn the representation of users’ interest from users’
historical behaviors with respect to a candidate item. DIEN [49]
and HUP [14] uses recurrent neural networks to capture the evolu-
tion of users’ interests. DMT [15] exploits multiple transformers to
model users’ diverse behavior sequences and achieves state-of-the-
art performance in recommendation [1, 15]. These methods focus
on learning the ranking models based on users’ implicit feedback
in a single scenario, pay few attention to learning ranking models
for multiple scenarios and neglect users’ spontaneous behaviors.

2.2 Multi-Scenario Learning to Rank
Multi-Scenario Learning to Rank,which aims to learn rankingmod-
els for multiple scenarios, is essential and significant for industrial
applications, where ranking services are usually applied in differ-
ent scenarios.There are some pioneeringwork [5, 22, 37] that starts
to investigate this problem. HMoE [22] formulates this problem
as a multi-task learning problem, and uses Multi-task Mixture-of-
Experts [27, 47] to implicitly identify distinctions and commonali-
ties between tasks, and improves the performance with a stacked
model learning task relationships in the label space explicitly. SAML [5]

focuses on modeling the difference and similarities between mul-
tiple scenarios. Although these methods are beneficial to improve
the performance of ranking inmultiple scenarios, they only exploit
users’ implicit feedback data in the recommender systems and ne-
glect users’ spontaneous behaviors. These methods are orthogonal
to our approach, which focuses on pre-training on users’ sponta-
neous behaviors. We leave the combination of these approaches
with our method as future work.

Cross-domain Recommendation [10, 20, 23, 33] aims to improve
the ranking performance of a type of items in the target domain
by transferring knowledge from other types of items in source do-
mains. For example, Ouyang et al. [33] proposed theMixed Interest
Network, which improves the CTR prediction of a target domain
(i.e. ads) leveraging auxiliary data from a source domain (i.e. news).
It is significant different with the Multi-Scenario Learning to Rank
problem, which aims to improve the ranking performance of the
same type of items in different scenarios.

2.3 Self-supervised Learning
Self-supervised Learning (SSL) [2, 34], which aims to enhance the
represent learning based on unlabeled data, has been widely used
in the areas of Compute Vision (CV) [2, 4, 34] and Natural Lan-
guage Processing (NLP) [8, 17] area. The basic idea is to define a
supervised pretext task based on the unlabeled dataset. After the
pretext task training finished, the learned parameters serve as a
pre-trained model and are transferred to downstream tasks by fine-
tuning. For example, in CV, Pathak et al. [34] proposed to gener-
ate the contents of an arbitrary image region conditioned on its
surroundings. SimCLR [2] proposed a simple framework for con-
trastive learning of visual representations. SimSiam [4] proposed
a simple Siamese network, which can learn meaningful represen-
tations without using negative sample pairs, large batches and mo-
mentum encoders. In NLP, BERT [8] pretrains deep bidirectional
representations from unlabeled text. The pre-trained BERT model
can be finetuned with just one additional output layer to create
state-of-the-art models for a wide range of downstream tasks, such
as question answering and language inference, without substantial
task-specific architecture modifications.
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Recently, there are some pioneering work [28, 38, 42, 43, 45,
48, 51] that attempt to apply self-supervised learning in Recom-
mender Systems. For the matching task, some researchers[28, 45]
exploit self-supervised learning to learn better representations for
long-tail items and achieve better performance in candidate gen-
eration. For the ranking task, S3-Rec [51] devises four auxiliary
self-supervised objectives on the training data to learn the correla-
tions among attribute, item, subsequence, and sequence by utiliz-
ing the mutual information maximization (MIM) principle. These
self-supervised learning based ranking approaches focus on utiliz-
ing users’ implicit feedback data in the recommender system and
neglect users’ spontaneous behaviors. In this paper, we proposed
the idea of performing self-supervised learning on users’ sponta-
neous behaviors to improve the performance and break the Feed-
back Loop problem in ranking. This is significantly different with
these approaches.

2.4 Intent Recommendation
Intent Recommendation (orQuery Recommendation) [11, 44], which
aims to predict users’ search intent and recommend potentially in-
terested queries to users, is playing significant roles in the growth
of search in e-commerce. MEIRec [11] models the relationships be-
tween users, products and queries as a heterogeneous graph and
uses aMetapath-guided Heterogeneous Graph Neural Network for
intent recommendation. FINN [44] uses the feedback interactive
neural network to model both the positive feedback and negative
feedback information simultaneously and achieves state-of-the-art
performance.The Intent Recommendation problem is differentwith
bothQuery Suggestion [24] and RelatedQuery Recommendation [21,
36, 52], where a partial or complete input query is needed. Query
Suggestion [24] aims to recommend some queries that starts with
the partial query (i.e., query prefix) from the user. Related Query
Recommendation [21, 36] aims to recommend some related queries
that the user would be interested in based on the user’s current in-
put query.

3 PROBLEM FORMULATION
The Multi-Scenario Learning to Rank problem. Given a set
of scenarios R = {R𝑘 }

|R |
𝑘=1, they share a common features space

F and label space Y. For scenario R𝑘 , the labeled training data
are: 𝐷R𝑘

= {(𝑓𝑖 , 𝑦𝑖 )}, 𝑖 = 1, 2, ..., |𝐷R𝑘
|, which are drawn from a

domain-specific distribution 𝑃R𝑘
over F ×Y. For different scenar-

ios, the distribution 𝑃R𝑘
are different. The Multi-Scenario Learn-

ing to Rank problem aims to learn a zoo of ranking models M =

{M𝑘 }
|R |
𝑘=1, where each scenario-specific rankingmodelM𝑘 is used

for ranking in scenario R𝑘 .

4 METHOD
In this section, we introduce the details of our framework ZEUS,
which aims to build a Zoo of ranking models for multiple scenarios
based on pre-training.There are two stages in ZEUS: self-supervised
learning based pre-training and fine-tuning.These two stages both
use the Sequential Interest Model to model users’ interests. In the
pre-training stage, ZEUS performs self-supervised learning on users’
spontaneous behaviors. In the fine-tuning stage, ZEUS fine-tunes
the pre-trainedmodel based on users’ implicit feedback in theMulti-
Scenario Intent Recommender System.

4.1 Sequential Interest Model
The Sequential Interest Model, which learns the representation of
users’ interest based on their historical behaviors, is used as the
backbone ranking model [49, 50]. In this paper, we use Deep Mul-
tifaceted Transformers (DMT) [15] (shown in Figure 3) as the Se-
quential Interest Model. DMT is the state-of-the-art ranking model
that serves the main traffic in recommender systems and search en-
gines in large-scale e-commerce sites like Taobao and JD.com [1,
15].

4.1.1 Input and Embedding Layer. The inputs can be divided into
two parts: categorical features and dense features.
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Categorical features. The categorical features are user pro-
file, users’ diverse behaviors, item profile and scenario-specific fea-
tures.

• User Profile. User Profile contains user’s characteristics, such
as age, gender, purchase power and so on.

• User’s Behaviors Sequences. For the behaviors sequences, we
empirically find that the most useful sequences for Intent Rec-
ommendation are the query sequence 𝑆𝑞 (i.e., the sequence of
users’ historical queries) and click sequence 𝑆𝑐 (i.e., the sequence
of users’ clicked products). A user’s behavior sequence is repre-
sented by a variable-length sequence 𝑆 = ⟨𝑥1, 𝑥2, . . . , 𝑥𝑇 ⟩, where
𝑇 is the length of the sequence.

• Item Profile. In the Intent Recommendation problem, there are
two types of items: queries and products . For each query, we
use its query id, characters, word segments, predicted product
category ids and statistical features (e.g., click-through rate) to
represent it. For each product, we use its product id, category id,
brand id and shop id to represent it.

• Scenario features. The scenario features include the scenario
information (e.g., scenario names).

Dense features.Thedense features are numerical featureswhich
are used by the last generation Intent Recommender System (i.e.,
FINN [44]) in Alibaba.

As previous work did [15], we use embedding layers to trans-
form the high dimensional sparse ids and dense features into low
dimensional dense vectors.

4.1.2 DeepMultifaceted Transformers Layer. To capture the user’s
interest, like the state-of-the-art ranking model DMT [15] did, we
use two separate Transformers [13, 40] to model the user’s query
sequence and click sequence, and learn the user’s interest vectors
in different perspective respectively. The basic idea is that users’
multiple types of behavior sequences on queries and products are
significantly different and they have different timescales. For each
behavior sequence, we exploit Transformer (right side in Figure 3)
to model user’s real-time interest and represent it as an interest
vector. In the Transformer, the encoder models the relationships

among items in the sequence, and the decoder learns user’s inter-
est vector corresponding to the target item. The encoder applies
self-attention on the the embeddings of the behavior sequence and
allows each item in the sequence to attend over all items in the
input sequence. As a user may have diverse interest [50], the de-
coder uses the target item as query and the output of the encoder
as both keys and values, exploits target attention to learn the atten-
tion score between the target item and each item in the historical
sequence, and learns a unique user interest vector for each target
item.

4.1.3 Prediction Layer. For each input sample, the Prediction Layer
uses Multi-layer Preceptrons (MLP) to predict the Click-Through
Rate (CTR) of the item:

𝑦 = 𝑆𝐼𝑀 (𝑓 ) = 𝑀𝐿𝑃 (𝐷𝑀𝑇 (𝑓 )) (1)

where 𝑆𝐼𝑀 denotes the Sequential Interest Model, 𝑓 is the input
features, 𝐷𝑀𝑇 (𝑓 ) is the output from the Deep Multifaceted Trans-
formers Layer, and 𝑦 is the predicted CTR.

4.2 Self-supervised learning based Pre-training
This stage performs self-supervised learning on the large corpus of
user’s spontaneous behaviors to improve the representation learn-
ing on users’ behaviors, and learns a task-agnostic pre-trained Se-
quential Interest Model.

Self-supervised learning [2, 8] has achieved state-of-the-art per-
formance in Natural Language Processing and Computer Vision.
The key idea in Self-supervised learning is the designing of Pretext
(i.e., pre-training) task, which aims to generate supervised train-
ing data from unlabeled data by predicting some part of the in-
put from the remaining part. For the Intent Recommendation prob-
lem, the main input of the Sequential Interest Model is users’ se-
quential behaviors. So a natural idea is learning to predict a user’s
some behaviors from the remaining behaviors in the sequence. In-
spired by BERT [8] and GPT [35], which are the state-of-the-art
self-supervised learning methods in the Natural Language Process-
ing area, we have designed one Pretext task called Next-Query Pre-
diction (NQP) in ZEUS.



Pretext Task: Next-Query Prediction (NQP). The NQP task
aims to predict the next query that a userwill spontaneously search
in the search box based on her historical behaviors. For a behav-
ior sequence 𝑆 = ⟨𝑥1, 𝑥2, . . . , 𝑥𝑇 ⟩, where 𝑇 is the length of the se-
quence and 𝑥𝑖 indicates a behavior on the item 𝑥𝑖 at the time stamp
𝑖 , the goal of the NQP task is to predict that the user will sponta-
neously search query 𝑥𝑡+1 at the next step based on the user’s cur-
rent context state 𝑐𝑡 = {𝑥1, 𝑥2, ..., 𝑥𝑡 }. For example, as illustrated
in the left part of Figure 2, the NQP task aims to predict that the
user will search queries 𝑞1 , 𝑞3, 𝑞𝑡 after she performs behaviors on
𝑝1, 𝑞2 and 𝑝3 respectively.

Loss Function. BERT [8] and GPT [35] exploit softmax func-
tion to predict the probability distribution of next item (i.e., token),
where the vocabulary sizes of items are only about 30,000 [8] and
40,000 [35] respectively. However, the softmax function is not suit-
able for industrial ranking system, where the vocabulary size of
items (e.g., queries, products) can be several million or billion. To
solve this high-dimensional sequential modeling problem, as Con-
trastive Predicting Coding (CPC) [32] did, we can encode the cur-
rent and future information as distributed vector representations
and use InfoNCE loss tomaximize themutual information between
the current context 𝑐𝑡 and future target 𝑥𝑡+1 defined as

𝐼 (𝑥𝑡+1; 𝑐𝑡 ) =
∑

𝑥𝑡+1,𝑐𝑡

𝑝 (𝑥𝑡+1, 𝑐𝑡 )𝑙𝑜𝑔
𝑝 (𝑥𝑡+1 |𝑐𝑡 )
𝑝 (𝑥𝑡+1)

(2)

where 𝑝 is the probability distribution function. Given a set 𝑋𝑁 =
{𝑥1, 𝑥2, ..., 𝑥𝑁 } of 𝑁 random samples containing one positive sam-
ple from 𝑝 (𝑥𝑡+1 |𝑐𝑡 ) and 𝑁 − 1 negative samples from the distribu-
tion 𝑝 (𝑥𝑡+1), the self-supervised InfoNCE loss is defined as:

𝐿𝑠𝑒𝑙 𝑓 −𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑 = −E𝑋𝑁
[𝑙𝑜𝑔( 𝑓 (𝑥𝑡+1, 𝑐𝑡 )∑

𝑥 𝑗 ∈𝑋𝑁
𝑓 (𝑥 𝑗 , 𝑐𝑡 )

)] (3)

where 𝑓 is the density ratio. In ZEUS, we use the Sequential Inter-
est Model (SIM) to calculate 𝑓 (𝑥 𝑗 , 𝑐𝑡 ) = 𝑆𝐼𝑀 ((𝑥 𝑗 , 𝑐𝑡 )) where 𝑥 𝑗 is
a candidate item, and 𝑐𝑡 = {𝑥1, 𝑥2, ..., 𝑥𝑡 } is the user’s recent be-
haviors sequence. The authors in [51] demonstrated the InfoNCE
can be approximated by cross-entropy loss. We empirically find
the effectiveness of using this approximate method.

Negative examples sampling. We treat users’ search queries
as positive examples and sample 𝑁 − 1 negative queries for each
positive query. There can be hundreds of millions of queries in in-
dustrial system and the selection of negative examples is extremely
important for training models. We find it effective to treat sug-
gested queries that are exposed but not clicked as negative exam-
ples.

Discussion. Compared with BERT and GPT, our method is dif-
ferent as follows: (1) ZEUS is light-weighted and time-efficient.The
time cost of ZEUS is only about 25 ms in online serving. BERT and
GPT use more than 12 layers of Transformers, which will lead to
heavy cost of time. They cannot be directly used for ranking in
industrial systems, which have strict limitation of time cost (i.e.,
lower than 100 ms). (2) BERT and GPT need the input is in the for-
mat of a sequence, which is not suitable for the industrial ranking
features, where other non-sequential types of features (e.g., user
profiles, dense features) also exist. (3) BERT only uses the encoder
in Transformer andGPT only uses the decoder in Transformer. Our
method uses both encoder and decoder, which is stronger for next

item prediction [15]. What’s more, the bidirectional encoder in
BERT is not suitable to model the chronological characteristics of
users’ behaviors in real-world applications. We have also tried the
state-of-the-art self-supervised learning method (i.e., Simsiam [4])
in Computer Vision, but find that it does not bring additional gain.

4.3 Fine-tuning.
In the fine-tuning stage, we fine-tune the pre-trained model and
generate the zoo of ranking models for multiple scenarios. To be
specific, firstly, we fine-tune the pre-trained Sequential Interest
Model based on the implicit feedback data in all the scenarios and
obtain a task-adaptive ranking model, which can be directly used
for ranking in new ranking scenarios where there is no training
data. Secondly, for each scenario, we fine-tune the task-adaptive
ranking model using the implicit feedback data in this scenario
and obtain the scenario-specific ranking model. For example, we
obtain the ranking model for scenario 1 by fine-tuning the task-
adaptive ranking model using implicit feedback data in scenario
1.

We empirically find that the performance of ZEUS is the best
when the sequential interest models in the pre-training and fine-
tuning stages share the same global embeddings, which contain
embedding vectors for high dimensional sparse ids with large vo-
cabulary size (i.e., query ids and products ids). Consequently, in the
fine-tuning stage, we fix the global embedding and only fine-tune
other parameters (i.e., embedding vectors of other sparse ids, pa-
rameters in the Deep Multifaceted Transformer Layer and the Pre-
diction Layer). The multiple ranking models for different scenar-
ios use the shared global embedding parameters to represent the
commonalities of multiple scenarios, and other scenario-specific
parameters to capture the characteristics of each scenario.

In the fine-tuning stage, we use the supervised cross entropy
loss function 𝐿𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑 for model training:

𝐿𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑 = − 1

𝑍

𝑍∑
𝑖=1

(𝑦𝑖𝑙𝑜𝑔𝑦𝑖 + (1 − 𝑦𝑖 )𝑙𝑜𝑔(1 − 𝑦𝑖 )) (4)

where 𝑍 is the size of training set, 𝑦𝑖 ∈ {0, 1} is the ground truth
label, and 𝑦𝑖 is the predicted CTR.

4.4 Model Training and Prediction.
In the training stage, the loss function 𝐿 is defined as:

𝐿 = 𝐿𝑠𝑒𝑙 𝑓 −𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑 + 𝐿𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑 (5)

where 𝐿𝑠𝑒𝑙 𝑓 −𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑 and 𝐿𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑 denote the losses in the pre-
training and fine-tuning stages respectively.

In the prediction stage in online serving system, we use the pre-
dicted CTR 𝑦𝑖 (in Equation 4) as the ranking score of the input.

5 EXPERIMENTS
5.1 Dataset
We conduct our research on Alibaba’s Multi-Scenario Intent Rec-
ommendation dataset (Ali-MSIR), which is collected from the im-
plicit feedback logs in TaobaoMulti-Scenario Intent Recommender
System fromNov 1, 2020 to Dec 31, 2020.The data fromNov 1, 2020
to Dec 30, 2020 is used as the training set, and the data fromDec 31,



Table 1: Statistics of the Dataset

Data Source Samples Positive Samples

Users’ Spontaneous Behaviors 15.47 billion 1.55 billion
Scenario 1: Homepage 4.96 billion 0.76 billion
Scenario 2: Search Discovery 0.47 billion 0.17 billion
Scenario 3: Affiliated APPs 2.21 billion 0.29 billion

Table 2: Performance of different methods for Intent Rec-
ommendation. “∗” indicates the statistically significant im-
provements (i.e., p-value < 0.01) over the best baseline.

Model AUC
Scenario 1 Scenario 2 Scenario 3

GBDT 0.754 0.805 0.767
DNN 0.807 0.815 0.768
FINN(Base) 0.808 0. 818 0.769
DMT 0.810 0.820 0.771
ZEUS 0.826∗ 0.854∗ 0.785∗

2020 is used as the testing set.We also sampled Users’ Spontaneous
Search Behaviors in Taobao Search from Dec 1, 2020 to Dec 30,
2020. For each positive search query of a user, we sample 9 queries
which are exposed to her but not clicked as negative examples.The
statistics of the dataset is shown in Table 1.We evaluate themodels
on one large scenario (“Homepage”), two small scenarios (“Search
Discovery” and “Affiliated APPs” ) and one new scenario (“Taobao
Special Price”) where there is no training data.

5.2 Baselines
• GBDT [12]. GBDT, which is a widely used model for industrial

recommender systems, was used for Intent Recommendation in
Taobao before 2019.

• FINN [44]. FINN, which uses the feedback interactive neural
network to model both the positive and negative feedback si-
multaneously, achieves state-of-the-art performance for Intent
Recommendation. It was used as the last generation Intent Rec-
ommendation method at Taobao from 2019 to 2020.

• DNN [7]. DNN uses pooling operation to aggregate users’ se-
quential behaviors and exploits Deep Neural Networks for rank-
ing.

• DMT [15]. DMT exploits multiple transformers to model users’
diverse types of behaviors, and achieves state-of-the-art perfor-
mance for ranking in Recommender Systems. DMT is a special
case of ZEUS where the pre-training stage is not used.

5.3 Evaluation Metrics
To evaluate the effectiveness of the methods, for offline A/B Test-
ing, we use the widely used metric AUC [50]. For online A/B Test-
ing, we use three coremetrics in e-commerce: CTR, CVR andGMV [50].

6 EXPERIMENTAL RESULTS
We aim to answer the follow questions:

Table 3: Influence of different types of behavior sequences.

Model behaviors AUC
Scenario 1 Scenario 2 Scenario 3

ZEUS no 0.780 0.812 0.768
ZEUS query 0.822 0.825 0.781
ZEUS click 0.818 0.845 0.782
ZEUS query+click 0.826∗ 0.854∗ 0.785∗

• RQ1: How does ZEUS perform compared with state-of-the-art
methods for multi-scenario ranking?

• RQ2: How do different components affect the performance of
ZEUS?

• RQ3: How does ZEUS perform in real-world multi-scenario rec-
ommender systems in e-commerce?

• RQ4: Can ZEUS break the Feedback Loop problem?
• RQ5: Can ZEUS provide meaningful interpretation of the rec-

ommendation results?

6.1 Comparison with Baselines (RQ1)
Table 2 shows the experimental results of different methods for the
Multi-Scenario Intent Recommendation task. All experiments are
repeated 5 times and the averaged results are reported. From this
table, we can find that: (1) DNN performs better than GBDT by
modeling the sequential behaviors. FINN can achieve better per-
formance than DNN by using the attention mechanism. DMT im-
proves the performance further by modeling the sequential behav-
iors using multiple transformers. (2) Our method ZEUS achieves
superior performance compared with DMT by using pre-training.
Compared to the state-of-the-artmethodDMT, ZEUS achieves 0.016,
0.034, 0.014 absolute AUC gains for one large scenario (i.e., sce-
nario 1) and two small scenarios (i.e., scenario 2 and 3) respec-
tively. These are significant improvements for industrial applica-
tions where 0.001 absolute AUC gain is remarkable [15, 29, 50].

6.2 Ablation Study (RQ2)
To investigate the effectiveness of components in ZEUS, we con-
duct multiple ablation studies.

6.2.1 Sequential Interest Model. Firstly, we investigate how differ-
ent types of sequential behaviors in the Sequential Interest Model
influence the performance of the ZEUS, and list the results in Table
3. From this table, we can find that: Both query sequence and click
sequence are important for Intent Recommendation, and modeling
them simultaneously achieves the best performance. We empiri-
cally find that further adding other types of behaviors (e.g., add to
cart, order [15]) doesn’t bring additional gain. So we use the query
and click sequences in ZEUS.

6.2.2 Self-supervised Learning based Pre-training Layer. Secondly,
we investigate how the Self-supervised Learning Pre-training Layer
influence the performance of ZEUS by comparing ZEUSwith DMT,
which is a special case of ZEUS where the pre-training stage is not
used. From the fourth and fifth rows in Table 2, we can find that:



Table 4: Performance in online A/B Testing in Alibaba’s Multi-Scenario Intent Recommender System. “∗” indicates the statis-
tically significant improvements (i.e., p-value < 0.01) over the baseline.

Model Scenario 1 Scenario 2 Scenario 3 Scenario 4
CTR CVR GMV CTR CVR GMV CTR CVR GMV CTR CVR GMV

GBDT -1.9% -5.0% -7.3% -0.4% -2.0% -4.3% -3.4% -1.1% -2.8% -6.7% -11.5% -15.3%
FINN(base) +0.0% +0.0% +0.0% +0.0% +0.0% +0.0% +0.0% +0.0% +0.0% +0.0% +0.0% +0.0%
DMT +3.6% +1.6% +1.8% +3.7% +2.6% +1.9% +1.4% +1.1% +2.4% +1.4% +2.5% +3.1%
ZEUS +16.6%∗ +22.9%∗ +28.4%∗ +6.1%∗ +8.2%∗ +7.1%∗ +5.9%∗ +5.7%∗ +12.0%∗ +5.3%∗ +9.8%∗ +8.4%∗
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Figure 5: Case study of ZEUS.

the Self-supervised Learning based Pre-training stage can improve
the ranking performance in all scenarios.

6.3 Online A/B Testing (RQ3)
To further evaluate the performance of ZEUS, we conduct online
A/B testing for one month. The results are shown in Table 4. From
this table, we can find that: (1) FINN averagely outperforms GBDT
by 3.1%, 4.9% and 7.4% in CTR, CVR and GMV respectively in these
scenarios. This demonstrates the effectiveness of modeling users’
sequential behaviors. (2) DMT averagely outperforms FINNby 2.5%,
2.0% and 2.3% in CTR, CVR and GMV respectively in these scenar-
ios. This illustrates that the self-attention and target-attention is
essential for sequential modeling. (3) ZEUS averagely outperforms
state-of-the-art method DMT by 6.0%, 9.7% and 11.7% in CTR, CVR
and GMV respectively. This demonstrates the significance of the
pre-training in ZEUS. It can solve the insufficient training data
problem in small and new scenarios and improve the performance
in all scenarios. (4) Comparedwith FINN, the last generationmodel
in our Intent Recommender System, ZEUS averagely improves the
online CTR, CVR and GMV by 8.5%, 11.7% and 14.0% respectively,
which are the largest improvements in Alibaba’s Intent Recom-
mender System over past five years. In a word, ZEUS outperforms
state-of-the-art methods for all scenarios, and it has been deployed
online successfully and serves the main traffic in Alibaba’s Multi-
Scenario Intent Recommender System.

6.4 Breaking the Feedback Loop problem (RQ4)
To investigatewhether ourmethod can alleviate the Feedback Loop
problem, we analysis the number of unique queries that are recom-
mended to the users by the models in a month, and demonstrate

Table 5: Performance in breaking Feedback Loop problem.

Pre-training Number of Unique Queries
Scenario 1 Scenario 2 Scenario 3

no 11.03 million 11.57 million 2.28 million
has 13.74 million 14.06 million 2.61 million
Improve +24.6% +21.5% +14.5%

the results in Table 5. From this table, we find that: ZEUS can av-
eragely improves the number of unique queries by 20.2% leverag-
ing the pre-training stage. This means that ZEUS can recommend
more long-tail queries to the users and break the Feedback Loop
problem.

6.5 Case Study (RQ5)
In this section, we investigate whether ZEUS can provide meaning-
ful interpretation of the recommendation results using case study.
From Figure 5, we find that: For the queries in the query sequence,
the queries “French sweater” and “knit sweater” are more simi-
lar to the recommended query “European style knit sweater”, and
they have much higher attention scores than other queries. For the
products in the click sequence, the products “knit dress” and “Euro-
pean style long sleeve sweater” have stronger relationship with the
recommended query, and they have much higher attention scores
than other products. By identifying that the user’s main interest is
“sweater” and she is interested in the “French”, “European”, “knit”
styles, ZEUS recommends the query “European style knit sweater”
to her.This demonstrates that ZEUS can accuratelymodel users’ in-
terest from multiple types of behavior sequences, and it has good
interpretation ability for the recommendation results.
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7 IMPLEMENTATION DETAILS
7.1 Implementation specifications
We have implemented our framework ZEUS with TensorFlow. For
the Sequential Interest Model, the hidden size, number of heads,
number of blocks in the Transformer are 128, 8 and 1. For each user,
we select her recent 10 behavior for each type of behaviors. For the
Prediction Layer, the layers of MLP are 512×256×64×1. The mini-
batch size is 1024. We use Adagrad [9] as the optimizer and the
learning rate starts at 0.01.The total number of parameters of ZEUS
is about 6.43 billion.We use the Parameter Server framework called
AOP in Alibaba to train the models on CPUs, where the servers
have 50×30 CPU cores and the workers have 1000×60 CPU cores.

7.2 Sequential Interest Model Settings
7.2.1 Dense Features. The last generation Intent Recommender Sys-
tem in Alibaba exploits some dense features, which have been de-
signed and improved for more than five years, to learn the ranking
models such as GBDT [12] and FINN [44]. We empirically find that
it will bring significant gains by integrating these dense features
into our model. We use 49 dense features, which can mainly be di-
vided into four types: item profile features (e.g., number of clicks,
CTR), use profile features (e.g., purchase power), user-item match-
ing features (e.g., whether the item matches the user’s gender or
age) and user-item interaction features (e.g., number of clicks on
the category of the item within a time window).

7.2.2 Categorical features. We use the embedding layer to rep-
resent the inputs as low dimensional vectors. As previous work
did [7, 15, 50], for each item, we use the embedding layer to trans-
form the high dimensional sparse ids of the item’s attributes into
low dimensional dense representations and then concatenate these
vectors into a single embedding vector to represent the item. The
statistics of main embedding tables in ZEUS is shown in Table 6.

7.3 System Architecture
Thesystem architecture of theMulti-Scenario Intent Recommender
System is shown in Figure 6. When a user enters a scenario, the
client will issue a request with the user and scenario information
to the Multi-scenario Intent Recommender System Server, where

Table 6: Statistics of some embedding tables in ZEUS.

Category Name Vocabulary size Embedding size

User age 120 4
gender 3 4

Query
query id 100 million 32
word segments 1 million 16
category id 50,000 16

Product

product id 100 million 32
word segments 1 million 16
category id 50,000 16
brand id 50,000 16

Scenario scenario name 10 4

the recommendation service is written with the C++ framework
called DII in Alibaba. Firstly, the recommendation service will call
the Candidate Generation module to generate hundreds of candi-
date queries. Secondly, the recommendation service will send the
candidate queries to the Real-Time Prediction (RTP) Server to pre-
dict the ranking scores. The RTP service will use the scenario’s
corresponding ranking model in ZEUS to calculate the ranking
scores. Thirdly, the recommendation service will select dozens of
top ranked queries to the client. The QPS (Queries per second)
of the Alibaba’s Multiple-scenario Intent Recommender System is
about 50,000. For the ranking models in ZEUS, the average RT (i.e.,
Response Time, or time cost) is about 25 ms , and the TP99 (i.e.,
Top 99 Percentiles) RT is about 36 ms.

8 CONCLUSION
In this paper, we propose ZEUS, which exploits pre-training to
improve the Multi-Scenario ranking problem. By performing Self-
supervised Learning on Users’ spontaneous Behaviors, ZEUS can
alleviate the long-standing Feedback Loop problem in learning rank-
ing models, solve the insufficient training data problem in small
and new scenarios, and improve the ranking performance in all
scenarios. We conduct extensive offline and online A/B Testing in
Alibaba’s Multi-Scenario Intent Recommeder System and demon-
strate the effectiveness of ZEUS for multi-scenario ranking.
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