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Abstract—The rapid spread of mobile internet and location-
acquisition technologies have led to the increasing popularity of
Location-Based Social Networks(LBSNs). Users in LBSNs can
share their life by checking in at various venues at any time.
In LBSNs, identifying home locations of users is significant for
effective location-based services like personalized search, targeted
advertisement, local recommendation and so on. In this paper,
we propose a Home Location Global Positioning System called
HLGPS to tackle with the home location identification problem in
LBSNs. Firstly, HLGPS uses an influence model named as IME
to model edges in LBSNs. Then HLGPS uses a global iteration
algorithm based on IME model to position home location of users
so that the joint probability of generating all the edges in LBSNs
is maximum. Extensive experiments on a large real-world LBSN
dataset demonstrate that HLGPS significantly outperforms state-
of-the-art methods by 14.7%.

Keywords—Home Location Identification, Location-Based So-
cial Networks, Influence Model, Social Networks

I. INTRODUCTION

In recent years, we have seen a rapid proliferation of Social

Networks such as Facebook, Twitter, Google+ and so on.

The rapid growth of mobile internet and location-acquisition

technologies have led to the increasing popularity of Location-

Based Social Networks(LBSNs) such as Foursquare1, Face-

book Places2 and so on by embedding location into Social

Networks. Users in LBSNs can conveniently log their activity

histories with spatio-temporal data by checking in at various

venues(e.g., restaurants, airports, scenic spots) at any time

using their smart phones. As the rapid growth of LBSNs,

Home Location Identification of users becomes one of the

most important problems because home location of users

are extremely important for various applications to provide

effective location-based services. For example, profiling users’

home locations enables search engines to provide personalized

search results in mother tongue of users, news sites to rec-

ommend localized news and advertisers to recommend local

advertisements.

The home location of a user is defined as the “permanent”

place where the user spend most of his time in as previous

work[9]. It captures the major and static geographic scope

†Corresponding author: Weidong Liu (E-mail: liuwd@tsinghua.edu.cn)

1https://foursquare.com
2https://www.facebook.com/places/

of the user and therefore provides valuable information for

personalized services. However, the home location problem

is quite challenging. Firstly, only a small percentage of users

provide their home locations in Social Networks due to privacy

concerns. On twitter, only a few people (16%) register city

level locations in their profiles and most of users leave general,

non-sensical or even blank information[9]. Secondly, users

may check in at various places far from their home and make

friends far away. Thirdly, many users do not have any check-in

data. As of September 2013, only 30% of users provide their

location information to at least one social media account and

12% of adult smartphone owners have used geo-social services

to check in at some location3. This problem has been attracting

great interests of researchers in academic recently[2, 3, 8–

10, 15]. Existing approaches can mainly be divided into two

parts: Content based approach [2, 3, 8] and Check-in based

approach[9, 10, 15]. Content based approach infers home

location of users using models based on extracted location

information from texts like tweets in Social Networks. Check-

in based approach infers home location of users leveraging

check-in data of users. However, these methods are still not

effective enough.

In this paper, we propose a Home Location Global Po-

sitioning System called HLGPS to tackle with the tough

home location identification problem in LBSNs. HLGPS uses

an influence model named as IME to model the edges in

LBSNs. Specifically, IME is an unified probabilistic model

that models edges in LBSNs based on signals from Social

relationship data(social friendship and social trust) and User-

centric data(check-in data and rating data). We represent a

LBSN as a directed heterogenous graph where the nodes can

be users or venues. Edges in the graph can be following edges

between users, check-in or rating edges from users to venues.

In IME, we model each node with a location and an influence

scope. We assume each edge t → h from a tail node t to a

head node h is generated according to locations of h and t,
influence scope of the head node h, social trust value of the

head node h for the tail node t. IME is based on the ideas that

people tend to make friends with people living near or people

who have more common friends with them, follow celebrities,

visit popular places, check in at venues nearby and rate venues

3http://www.pewinternet.org/2013/09/12/location-based-services
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that are near to them. In this paper, we propose the idea of

using “social trust” to measure closeness in social structure to

model edges in LBSNs. Social trust between users is measured

by applying sigmoid function on the number of their common

friends. It will be higher if two users have more common

friends. People will tend to rate venues if they visit them often

and be familiar with them. These venues will probably be near

to their home. To the best of our knowledge, we are the first

that propose the idea of using “social trust" and “rating data"

for Home Location Identification problem. HLGPS then uses a

two-stages global iteration method to position home location

of users based on IME model. In the first stage, for users

who have check-in data, we develop a single-pass clustering

algorithm to cluster their check-in data and select the center

of largest cluster as home locations of them. In the second

stage, we use a global iteration algorithm to estimate home

location of users so that the joint probability of generating all

the edges in LBSNs is maximum.

We have conducted extensive experiments to evaluate

HLGPS and compared it with state-of-the-art methods[4, 9, 10,

15, 17] based on a large-scale Foursquare dataset containing

about 836K users and 649K venues. Experiment results show

that HLGPS can predict home locations of users who have

check-in data at the accuracy 92.3% though the average check-

in number of each user is only about 2.7. HLGPS can predict

home locations of all users who don’t have home location at

the accuracy of 67.7%, outperform state-of-the-art methods by

about 14.7%, when only 16.7% users have check-in data. In

a word, out method significantly outperforms state-of-the-art

methods, and achieve the best performance.

II. DATASET DESCRIPTION

A. Foursquare Dataset

Foursquare is currently one of the largest and most popular

LBSNs. Users in Foursquare can share their locations with

friends and followers through check ins. As of December

2013, Foursquare had 45 million registered users4. In this

paper, we use a widely used and publicly available Foursquare

dataset [6, 16]. In this dataset, each user has an unique id

and a geospatial location that represents the user’s home

town location. Each venue has an unique id and a geospatial

location. The social graph data contains the social graph edges

that exist between users. The rating data consists of implicit

ratings that quantify how much a user likes a specific venue.

In the Foursquare dataset within the continental United States,

there are 835,896 users, 648,825 venues, 370,477 check-ins,

1,397,412 ratings and 12,924,609 social graph edges.

B. Mapping Location to City

In this paper, we map a location to a specific city in

following method: The candidate cities which we select are

the 297 cities in the United States with a population of at

least 100,000 on July 1, 2014, as estimated by the United

4https://en.wikipedia.org/wiki/ Foursquare
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Fig. 1. Location-Based Social Networks(LBSN)

States Census Bureau5. We define a location’s mapped city as

the nearest candidate city from the location.

III. HOME LOCATION IDENTIFICATION PROBLEM

FORMULATION

A. Location-based Social Networks Formulation

We represent a Location-Based Social Network as a directed

heterogeneous graph G = (N,E). Demonstration of the

LBSN is shown in Figure 1. We denote nodes and edges in the

graph as N , E. For the nodes, we denote users and venues as

U , V . We use UH and U−H to denote the set of users whose

home locations are known and not known. Similarly, we use

UC and U−C to denote the set of users who have and not

have check-in data. For a geographical location L denoted by

(α, β), α is the latitude and β is the longitude. We denote

the home location of user ui as Lui and location of venue vj
as Lvj . The geographical distance between nodes ni and nj

is denoted as dis(ni, nj). For the edges, we denote following

edges, check-in edges, ratings as F , C, R. Further, we denote

incoming and outgoing nodes of node n of edge type t as

It(n) and Ot(n).

B. Home Location Identification Problem Formulation

Home Location Identification Problem For a Location-

based Social Network G = (N,E), for each user in U−H ,

estimate a home location L̃ui
so as to make L̃ui

close to ui’s

true home location Lui
. The problem is formatted as Equation

1.

min
L̃u

1

|U−H |
∑

ui∈U−H

dis(Lui
, L̃ui

) (1)

IV. IME: INFLUENCE MODEL ON EDGES

Our Home Location Global Positioning System HLGPS

uses an influence model names as IME to model edges in

Location-Based Social Networks.

5https://en.wikipedia.org/wiki/List_of_United_States_cities_by_population
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A. Motivation of IME model

In this paper, we exploit social friendship, check-in data,

social trust and rating data to model edges in social networks.

1) social friendship: The probability of friendship de-

creases as the distance between nodes increases has been

observed from social networks like Facebook, Twitter and so

on[1, 9]. Different nodes have different influence and they

have different probabilities to attract tail nodes at the same

distance[9]. For example, a star is more likely to attract users

who live far away than a regular user.

2) check-in data: Users tend to check-in at venues near

to them[4, 9]. [4] infer the home location by discretizing the

world into cells and defining the home location as the average

position of check-ins in the cell with the most check-ins. [14]

take the most popular place where the user check in as her

home location. Consequently, for users who have check-in

data, we can directly predict home location of users leveraging

their check-in data.

3) social trust: Existing methods[9] consider friend relation

as a binary relationship. However, closer friends in social

networks should have more influence on the home location

of users. In this paper, we propose the concept “social trust”

to measure the closeness in social structure and firstly apply

it to Home Location Identification problem. We denote the

social trust value of node ni for node nj as STji and

measure social trust between nodes by applying sigmoid

function(sigmoid(x) = 1
1+e−x ) on the number of common

friends. In the experiments, we also try the commonly used

metric Jaccard Similarity[7] performing on friend set of users

to measure social trust.

4) rating data: In this paper, we firstly introduce the using

of “rating” data for Home Location Identification problem. If

a user rate a venue, he may visit the place often or be familiar

with the place. The venues is probably near to the user who

rate them.

B. Formulation of IME Model

In the IME model, we denote the influence of a node ni

as Ini
which is a probability distribution over the geographic

plane. For a node ni, we define ni’s influence on another

node nj at a location L as the probability that nj build an

edge e〈nj , ni〉 to it. An influential node (user or venue) will

have more broad influence scope and more influence at the

same distance than an ordinary node.

1) Influence Model of Nodes on Geographic: We choose a

gaussian distribution to capture a node’s influence model for

its expressiveness and simplicity [9]. Specifically, we model

a node ni’s influence Ini
as a bivariate gaussian distribution

N(Lni ,Σni), centered at ni’s location Lni = (αni , βni) and

with the covariance matrix Σni as its influence scope.

Ini
= N(Lni

,Σni
) (2)

We assume the influence scope of a node on the latitude and

longitude dimensions is the same, so
∑

ni
=

(
σni

0
0
σni

)
.

The influence probability of node ni at a location L is

measured in Equation 3:

P (L|Ini) =
1

σ2
ni

e
(αni

−αL)2+(βni
−βL)2

−2σni
2

(3)

2) Social User Influence Model: The probability that a user

ui influence a user uj to build a following edge to him is

measured in Equation 4:

P (f〈uj , ui〉) = STji

σ2
ui

e
STji

(αui
−αuj

)2+(βui
−βuj

)2

−2σui
2

(4)

Equation 4 represents that a user with larger influence scope

will attract more followers, a user will attract followers who

are near to them easier and two users will have higher

probability to be friends if they have more common friends.
3) Venue Influence Model: The probability that a user ui

check in at venue vj is measured in Equation 5:

P (c〈ui, vj〉) = 1

σ2
vj

e

(αvj
−αui

)2+(βvj
−βui

)2

−2σvj
2

(5)

Equation 5 represents that a venue with larger influence scope

will attract more users to check in and a venue will attract

more users nearby to check in.

The probability that a user ui rate venue vj is measured in

Equation 6:

P (r〈ui, vj〉) = 1

σ2
vj

e

(αvj
−αui

)2+(βvj
−βui

)2

−2σvj
2

(6)

Equation 6 represents that a venue with larger influence scope

will attract more users to rate and a venue will attract more

users nearby to rate.
4) IME Model on LBSNs: We make a conditional inde-

pendence assumption that edges are conditionally independent

given the head node and tail node. This assumption is widely

applied in machine learning models like Naive Bayes[13].

For a LBSN, there are three types of edges: following edges,

check-in edges and rating edges. We measure the weights of

following edges, check-in edges and rating edges as Wf , Wc

and Wr respectively. IME Model is shown in Equation 7 which

measures joint probability of generating edges in LBSNs.

P (E|IU , IV ) =
∏

f〈uj ,ui〉∈F
pWf (f〈uj , ui〉)

×
∏

c〈ui,vj〉∈C
pWc(c〈ui, vj〉)×

∏
r〈ui,vj〉∈R

pWr (r〈ui, vj〉)

(7)

σ2
ui

=

∑

uj∈If (ui)

STji((αuj − αui)
2 + (βuj − βui)

2)

2|If (ui)| (10)

σ2
vj =

∑

ui∈(Ic(vj)∪Ir(vj))

Wc(αui − αvj )
2 +Wr(αui − βvj )

2

2(Wc|Ic(vj)|+Wr|Ir(vj)|)
(11)
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αui =

∑
uj∈If (ui)

Wf

STjiαuj

σ2
ui

+
∑

uj∈Of (ui)

Wf

Tijαuj

σ2
uj

+
∑

vj∈Oc(ui)

Wc

αvj

σ2
vj

+
∑

vj∈Or(ui)

Wr

αvj

σ2
vj

∑
uj∈If (ui)

Wf
STji

σ2
ui

+
∑

uj∈Of (ui)
Wf

Tij

σ2
uj

+
∑

vj∈Oc(ui)
Wc

1
σ2
vj

+
∑

vj∈Or(ui)
Wr

1
σ2
vj

(8)

βui =

∑
uj∈If (ui)

Wf

STjiβuj

σ2
ui

+
∑

uj∈Of (ui)

Wf

Tijβuj

σ2
uj

+
∑

vj∈Oc(ui)

Wc

βvj

σ2
vj

+
∑

vj∈Or(ui)

Wr

βvj

σ2
vj

∑
uj∈If (ui)

Wf
STji

σ2
ui

+
∑

uj∈Of (ui)
Wf

Tij

σ2
uj

+
∑

vj∈Oc(ui)
Wc

1
σ2
vj

+
∑

vj∈Or(ui)
Wr

1
σ2
vj

(9)

V. HOME LOCATION IDENTIFICATION METHOD

In this section, we develop our Home Location Identification

method based on IME model. We estimate unknown home

location of users using the Maximum Likelihood Estima-

tion(MLE) principle under IME model and the Home Location

Identification problem is converted to optimize Equation 12.

To be specific, we estimate users’ home locations to maximize

the logarithm of the likelihood which represents joint proba-

bility of generating edges(friendships, check-ins, ratings).

max
IU ,IV

logP (E|IU , IV ) (12)

We differentiate Equation 7 with regard to unknown variable

and obtain the results shown in Equation 8, 9, 10, 11. In

these equations, the unknown variables are dependent on each

other. HLGPS uses a two-stage global iteration algorithm

which is demonstrated in Algorithm 1 to solve the problem. In

Stage 1, HLGPS initializes home location of users who have

check-in data by clustering their check-in data using a sing-

pass clustering algorithm. In Stage 2, HLGPS updates home

location of users iteratively so that the likelihood is maximum.

A. Stage 1: Initializes home locations of users in U−H

HLGPS initializes home location of users who don’t have

home locations from Step 3 to Step 9. For a user who

has check-in data, HLGPS initializes his home location by

clustering his check-in data Cui using a sing-pass clustering

algorithm for locations called LocClustering inspired from the

Single-pass Clustering Algorithm[5]. For a user who don’t

have check-in data, HLGPS initialize his home location as

random. LocClustering clusters a location list to clusters in

a single pass and returns the center of the largest cluster as

result. The distance between a cluster and a location is defined

as the distance between the location of the cluster center and

the location. Specifically, LocClustering scans each location Li

in location list sequentially and find the nearest cluster Cmin

for current location Li. If there are clusters and the distance

dmin between the nearest cluster Cmin and Li is less than a

threshold dτ , it adds the location Li to Cmin. If there are no

clusters or dmin is larger than dτ , it creates a new cluster Cnew

with the location Li. We denote the average number of check-

ins of users as c, then the complexity of Stage 1 is O(|UC |×c)
where |UC | is the number of users who have check-in data.

Consequently, LocClustering is a linear algorithm.

B. Stage 2: Updating home locations of users iteratively

HLGPS updates home location of users who don’t have

check-in data iteratively from Step 12 to Step 30. The outer

loop from Step 12 to Step 30 updates σ2
ui

and σ2
vj based on

Equation 10 and 11. The inner loop from Step 20 to Step 28

updates αui and βui based on Equation 8 and 9. HLGPS stops

when the likelihood converges.

Algorithm 1 HLGPS

Input: G,F,C,R, Lui(∀ui ∈ UH), cτ
Output: Lui(∀ui ∈ U−H)

1: function HLGPS(G,F,C,R,L, cτ ) � HLGPS algorithm
2: // Stage 1: Init home location of users in U−H

3: for each ui ∈ U−H do � users: no home location
4: if ui ∈ UC then � user: have check-in
5: Lui = LocClustering(Cui , dτ )
6: else � user: no check-in
7: Lui = (random latitude, random longitude)
8: end if
9: end for

10: // Stage 2: Update home locations of users in U−H iteratively
11: //Outer Loop
12: while true do
13: for each ui ∈ U do
14: Update σ2

ui

15: end for
16: for each vj ∈ V do
17: Update σ2

vj
18: end for
19: // Inner Loop
20: while true do
21: for each ui ∈ (U−H ∩ U−C) do
22: Calculate αnew

ui
and βnew

ui

23: end for
24: If Inner Loop converges, then break
25: end while
26: for each ui ∈ (U−H ∩ U−C) do
27: αui = αnew

ui
, βui = βnew

ui

28: end for
29: If Outer Loop converges, then break
30: end while
31: end function

VI. EXPERIMENTS

A. Experiment Setup

The code6 of HLGPS and dataset7 are available online.
1) Dataset: In the dataset, there are 138,983 users who have

check-in data, constituting only 16.7% of all users. For users

who have check-in data, the average check-in number of each

user is about 2.7. We define the ratio of people who have home

location as rh and rh = UH

U . In the experiments, we randomly

split users into two parts: rh of users who have home location

6https://github.com/guyulongcs/HLGPS
7https://drive.google.com/open?id=0B7QrSjWN1vvYcm1NT3pCdXkxcDg
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and 1−rh of users who don’t have have home location. We set

rh = 80% which is the same way as existing methods[1, 3, 9].

In this setting, there are 669,472 users have home location and

166,424 users who don’t have home location. There are 27,781

users(16.7%) who have check-in data among the 166,424 users

who don’t have home location.

2) Methods:
• UDI is the method developed in [9], which predicts a user’s

location based on an influence model. UDI uses signals like
friendships and venues in tweets.

• Maxvote is the baseline method developed in [15], which
predicts a user’s location by taking the most popular location
of a user. We can’t directly using a max vote scheme because
location information like latitude and longitude are continuous.
So we firstly map check-in list to city list using method
described previously.

• ClusterHier is the baseline method developed in [10], which
predicts a user’s home location using a hierarchical clustering
algorithm to cluster checkins at night(from 8:00 p.m. to 7:59
a.m.).

• Avg is the baseline method developed in [4, 17], which dis-
cretizes the world into 25 by 25 km cells and defines the home
location as the average position of check-ins in the cell with
the most check-ins.

• HLGPS is our Home Location Identification method.
• HLGPS−r is our Home Location Identification method, but

doesn’t use rating data.
• HLGPStj is our Home Location Identification method, but

uses Jaccard Similarity to measure social trust.
• HLGPSuc is our Home Location Identification method, but

also update users who have check-in data in the iteration stage.

3) Evaluation Metrics: We measure the performance of

different methods using accuracy within 100 miles error

distance(ACC) the same as previous work[9]. To be specific,

for a user ui, his true and estimated home location are Lui
and

L̃ui
respectively. Let Err(ui) be the error distance between

Lui
and L̃ui

, then ACC is defined as Equation 13.

ACC =
|ui ∈ U−H ∧ Err(ui) ≤ 100|

|U−H | (13)

B. Experiment Results

1) Home Location Identification on U−H ∩ UC: Methods

Maxvote, ClusterHier and Avg have the shortcoming that

they can only predict home locations of users who have check-

in data. It means that they can only predict 16.7% of users in

U−H in the dataset. We firstly compare the performance of dif-

ferent methods on users who have check-in data(U−H ∩UC).

The performance of methods for Home Location Identification

on U−H ∩UC is shown in Figure 2. The result demonstrates

that our method HLGPS outperforms all existing methods

for users who have check-in data. To be specific, HLGPS
can predict home locations of users who have check-in data

at the accuracy 92.3% though the average check-in number of

each user is only about 2.7, and achieves the best performance.

2) Home Location Identification on U−H : In this experi-

ment, we compare the performance of methods for all users

who don’t have home location(U−H ). The performance of

methods for home location identification on all users who

don’t have home location is shown in Figure 4.

Fig. 2. Performance of methods on U−H ∩ UC

Fig. 3. Predicted and true home locations(red: predicted, blue: true)

a) HLGPS: We used grid search and found that

HLGPS has the highest accuracy of 67.7% when Wf =
1,Wc = Wr = 0.1. The predicted and true home location

of users who don’t have home location(U−H ) are shown in

Figure 3.

b) HLGPS vs. UDI: HLGPS significantly improves

UDI by 14.7% in terms of ACC.

c) HLGPS vs. HLGPStj: By comparing HLGPS
and HLGPStj , we see that for the measurement of trust, sig-

moid function improves ACC by 4.2% comparing to Jaccard

Similarity.

d) HLGPS vs. HLGPS−r: By comparing HLGPS
and HLGPS−r, we see that rating data can improve ACC
by 3.5%. This demonstrates the effectiveness of using rating

data for Home Location Identification problem.

e) HLGPS vs. HLGPSuc: By comparing HLGPS
and HLGPSuc, we see that only update locations of users

in U−C in updating stage of HLGPS can improve the ACC
by 5.4%. In the initialization stage of HLGPS, we initialize

home location of users in U−C as random value and home

location of users in UC by clustering their check-in data. If

we update home location of users in UC using the randomly

initialized locations of U−C in the updating stage, the accuracy

of estimated home location of users in UC may be affected.

3) Influence of ratio of users who have home location:
To investigate the influence of ratio of users who have home

905



Fig. 4. Performance of methods on U−H when rh = 0.8

location, we evaluate methods in another setting where rh =
0.2, which means that only 20% users have home location. In

this setting which is more close to the real-world, HLGPS
has the accuracy of 55.9%, significantly outperforms UDI by

71.5%. We find that HLGPS outperforms UDI even more

when more users don’t have home location.

C. Discussion

Content based approach [2, 3, 8, 11, 12] infers home

location based on texts in social networks. This approach needs

texts data in social network. What’s more, venue information

in texts can be noisy and ambiguous: Our method avoids

problems like these using check-in data. Check-in based

approach[4, 9, 10, 15, 17] infers home location of users

using check-in data. Existing methods like Maxvote[15],

ClusterHier[10] and Avg[4, 17] have the shortcoming that

they can only predict home locations of users who have check-

in data. Comparing to previous research, we firstly demonstrate

the effectiveness of using social trust which measures close-

ness in social structure and rating data for the Home Location

Identification problem.

VII. CONCLUSION AND FUTURE WORK

Home Location Identification of users in Location-based

Social Networks is significant for location-based applications

such as personalized search and recommendations. In this pa-

per, we propose a Home Location Global Positioning System

called HLGPS to solve the problem. Extensive experiments

on a large scale dataset demonstrate that HLGPS outperforms

state-of-the-art methods by 14.7%. In future, we will further

study how to use time information for the Home Location

Identification problem. What’s more, we plan to do research

on how to improve location-based services based on our Home

Location Global Positioning System HLGPS and study how

to protect privacy of users in social networks.
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