
Neural Interactive Collaborative Filtering
Lixin Zou1, Long Xia2, Yulong Gu3,

Xiangyu Zhao4, Weidong Liu1, Jimmy Xiangji Huang2, Dawei Yin5
1Tsinghua University, China, 2York University, Canada

3JD.com, China, 4Michigan State University, USA, 5Baidu Inc., China
{zoulx15,liuwd}@mails.tsinghua.edu.cn,{longxia,jhuang}@yorku.ca
guyulongcs@gmail.com,zhaoxi35@msu.edu,yindawei@acm.org

ABSTRACT
In this paper, we study collaborative filtering in an interactive set-
ting, in which the recommender agents iterate between making
recommendations and updating the user profile based on the inter-
active feedback. The most challenging problem in this scenario is
how to suggest items when the user profile has not been well estab-
lished, i.e., recommend for cold-start users or warm-start users with
taste drifting. Existing approaches either rely on overly pessimistic
linear exploration strategy or adopt meta-learning based algorithms
in a full exploitation way. In this work, to quickly catch up with
the user’s interests, we propose to represent the exploration policy
with a neural network and directly learn it from the feedback data.
Specifically, the exploration policy is encoded in the weights of
multi-channel stacked self-attention neural networks and trained
with efficient Q-learning by maximizing users’ overall satisfaction
in the recommender systems. The key insight is that the satisfied
recommendations triggered by the exploration recommendation
can be viewed as the exploration bonus (delayed reward) for its
contribution on improving the quality of the user profile. There-
fore, the proposed exploration policy, to balance between learning
the user profile and making accurate recommendations, can be di-
rectly optimized by maximizing users’ long-term satisfaction with
reinforcement learning. Extensive experiments and analysis con-
ducted on three benchmark collaborative filtering datasets have
demonstrated the advantage of our method over state-of-the-art
methods.

KEYWORDS
Cold start, Recommender Systems, Meta-learning, Reinforcement
Learning

ACM Reference Format: Lixin Zou, Long Xia, Yulong Gu, Xiangyu Zhao,
Weidong Liu, Jimmy Xiangji Huang, Dawei Yin. 2020. Neural Interactive
Collaborative Filtering. In Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR
’20), July 25–30, 2020, Virtual Event, China. ACM, NY, NY, USA, 10 pages.
https://doi.org/10.1145/3397271.3401181

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGIR ’20, July 25–30, 2020, China
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8016-4/20/07. . . $15.00
https://doi.org/10.1145/3397271.3401181

1 INTRODUCTION
Over the past decade, recommender systems have shown great
effectiveness and become an integral part of our daily lives. Recom-
mendation by nature is an interactive process: a recommender agent
suggests items, based on the user profile; users provide feedback on
the suggested items; the agent updates the user profile and makes
further recommendations. This kind of interactive recommenda-
tion paradigm has been widely deployed in real-world systems (e.g.,
personalized music recommendation in Spotify1, product recom-
mendation in Amazon2, image recommendation in Pinterests3) and
has attracted a lot of interest from the research community [33, 50].

A key challenge in the interactive recommendation is to suggest
items with insufficient observations, especially for interactive col-
laborative filtering where there is no content data to represent users
and items and the only observations are users’ ratings [46]. It poses
a “chicken-or-the-egg” problem in providing accurate recommen-
dations since satisfied recommendations require adequate observa-
tions of user’s preferences. Besides, it is inevitable because we only
have partial observations or even no observations for the cold-start
users or warm-start users with taste drifting, which constitute the
main user group. Therefore, a persistent and critical problem in
interactive collaborative filtering is how to quickly capture user’s
interests while not compromising his/her recommendation expe-
rience, i.e., how to balance between the goals of learning the user
profile (i.e., exploration) and making accurate recommendations
(i.e., exploitation)?

The existing approaches mainly studied this problem in two
directions: (1) MAB (multi-armed bandits) approaches and (2)
Meta-Learning approaches. (1) TheMAB approaches formulate
the problem as multi-armed bandits or contextual bandits, and
solve it with intricate exploration strategies, such as GLM-UCB
and Thompson Sampling [3, 25, 46]. However, to achieve provably
low bounds, these approaches optimize the recommendations in
the worst case and result in overly pessimistic recommendations
that may not be able to achieve the overall optimal performance.
Additionally, these methods are usually computationally intractable
for non-linear models, which terrifically limits its usage in recent
advanced deep models [7, 16]. (2) Recently, meta-learning ap-
proaches, which can fast adapt model on newly encountered tasks,
have been leveraged to solve the cold-start recommendation. Exist-
ing methods treat suggesting items for different users as different
tasks and aim to learn a learning algorithm that can quickly identify
user preferences after observing a small set of recommendations, i.e.,

1https://www.spotify.com/
2https://www.amazon.com/
3https://www.pinterest.com/

Session 4C: Neural Networks and Embedding SIGIR ’20, July 25–30, 2020, Virtual Event, China

749

https://doi.org/10.1145/3397271.3401181

the support set. The meta-learning perspective is appealing since it
avoids the complexity of hand-designing sophisticated exploration
policies and enables us to take advantage of deep neural networks.
However, these approaches ignore the performance on the support
set, which may lead to the recommendation of highly irrelevant
items and terrible user experience at the phase of constructing
the support set. Even worse, these methods perform lousy when
faced with users’ tastes drifting or poor quality support set due to
its deficiency in actively exploring users’ interests and excessive
dependence on the heuristically selected support set.

Rather than hand-designing the sophisticated exploration poli-
cies, we propose a framework named neural interactive collab-
orative filtering (NICF), which regards interactive collaborative
filtering as a meta-learning problem and attempts to learn a neural
exploration policy that can adaptively select the recommendation
with the goal of balance exploration and exploitation for differ-
ent users. In our method, the exploration policy is structured as a
sequential neural network, which consists of two parts. The first
part embeds the user profile by feeding past recommendations and
user’s feedback into multi-channel stacked self-attention blocks to
separately capture the information of versatile user feedback. The
second part, the policy layer, generates the recommendation with
a multi-layer perceptron. Therefore, the sequential neural network
can update the user profile based on the historical recommendations
and the exploration policy is encoded in the weights of the neural
network. In this work, we propose to directly optimize the weights
of exploration policy by maximizing the overall users’ satisfaction
throughout the recommendation journey with an efficient rein-
forcement learning (RL) algorithm. It is meaningful in two aspects:
(1) The ultimate goal of exploration/exploitation is to maximize
users’ overall engagement during the interactive recommendation.
(2) From the perspective of reinforcement learning, it is insightful
since the satisfied recommendations triggered by an exploration
recommendation can be viewed as the exploration bonus (delayed
reward) for its contribution on improving the quality of the user
profile. Therefore, optimizing the sum of immediate rewards and
delayed rewards can be viewed as maximizing the balance between
the rewards for providing accurate personalized recommendations
and the rewards for exploring user’s interests, which can be effec-
tively solved by RL. By doing so, the learned exploration policy thus
can act as the learning process for interaction recommendations
and constantly adapt its strategy when deployed with cold-start or
warm-start recommendation (analyzed in Section 4.5).

The NICF exhibits following desirable features: (1) It avoids the
overly pessimism and complexity of existing hand-designing ex-
ploration policies for interactive collaborative filtering. (2) It can
be incorporated with any advanced deep model for recommenda-
tions [7, 38], which can capture much more non-linear user-item
interactions. (3) The property of balancing the goals of exploration
and exploitation alleviates the pressure of losing users caused by
the full exploitation in existing meta-learning methods. Lastly, to
verify its advantage over state-of-the-arts, we conduct extensive ex-
periments and analysis on three benchmark datasets (MovieLens 4,
EachMovie 5 and Netflix 6). The experimental results demonstrate
4https://grouplens.org/datasets/movielens/
5https://www.librec.net/datasets.html
6https://www.kaggle.com/netflix-inc/netflix-prize-data

its significant advantage over state-of-the-art methods and the
knowledge learned by NICF.

Our main contributions presented in this paper are as follows:

• We formally propose to employ reinforcement learning to
solve the cold-start and warm-start recommendation under
the interactive collaborative filtering setting.
• We propose to represent the exploration policy with multi-
channel stacked self-attention neural networks and learn the
policy network by maximizing users’ satisfaction.
• Weperform extensive experiments on three real-world bench-
mark datasets to demonstrate the effectiveness of our NICF
approach and the knowledge learned by it.

2 PRELIMINARY
In this section, we first formalize the interactive collaborative filter-
ing on the perspective of the multi-armed bandit and then shortly
recapitulate the widely used approaches and its limitations for
interactive collaborative filtering.

2.1 A Multi-Armed Bandit Formulation
In a typical recommender system, we have a set of N users U =
{1, . . . ,N } and a set ofM items I = {1, . . . ,M}. The users’ feedback
for items can be represented by a N ×M preference matrix R where
ru,i is the preference for item i by user u. Here, ru,i can be either
explicitly provided by the user in the form of rating, like/dislike,
etc, or inferred from implicit interactions such as views, plays and
purchases. In the explicit setting, R typically contains graded rel-
evance (e.g., 1-5 ratings), while in the implicit setting R is often
binary. Without loss of generality, we consider the following pro-
cess in discrete timesteps. At each timestep t ∈ [0, 1, 2, . . . ,T], the
system delivers an item it to the target user u, then the user will
give feedback ru,it , which represents the feedback collected by the
system from user u to the recommended item it at timestep t . In
other words, ru,it is the “reward” collected by the system from the
target user. After receiving feedback, the system updates its model
and decides which item to recommend next. Let’s denote st as the
available information (the support set) the system has for the target
user st = {i1, ru,i1 , . . . , it−1, ru,it−1 } at timestep t .

Then, the item is selected according to a policy π : st → I , which
is defined as a function from the current support set to the selected
item it ∼ π (st). In the interactive recommendation process, the
total T-trial payoff of π is defined as

∑T
i=1 rt,it . For any user u, our

goal is to design a policy π so that the expected total payoff Gπ (T)
is maximized,

Gπ (T) = Eit∼π (st)

[T∑
t=1

ru,it

]
. (1)

Similar, we can define the optimal expectedT -trial payoff asG∗(T) =
E
[∑T

t=1 ru,i∗t

]
, where i∗t is the optimal recommendation with max-

imum expected reward at timestep t . Usually, in MAB, we would
like to minimize the regret defined as G∗(T) − Gπ (T). However,
in recommender system, it is more intuitive to directly maximize
the cumulative reward Gπ (T), which is equivalent to minimize the
regret.

Session 4C: Neural Networks and Embedding SIGIR ’20, July 25–30, 2020, Virtual Event, China

750

https://grouplens.org/datasets/movielens/
https://www.librec.net/datasets.html
https://www.kaggle.com/netflix-inc/netflix-prize-data

2.2 Multi-Armed Bandit Based Approaches
Currently, the exploration techniques in interactive collaborative
filtering are mainly based on probabilistic matrix factorization
(PMF) [26], which assumes the conditional probability distribu-
tion of rating follows a Gaussian distribution Pr (ru,i |p⊤uqi ,σ

2) =
N(ru,i |p⊤uqi ,σ

2). Here, pu and qi are the user and item feature
vectors with a zero mean Gaussian prior distribution and σ is the
prior variance. During the learning procedure, current approaches,
as shown in Figure 1 (a), iterate between two steps: (1) Obtaining
the posterior distributions of the user and item feature vectors after
the (t − 1)-th interaction, denoting as Pr (pu) = N(pu,t |µu,t , Σu,t)
and Pr (qi) = N(qi,t |νi,t ,Ψi,t). The calculation of mean and vari-
ance terms {µu,t , νi,t , Σu,t and Ψi,t } can be obtained by following
MCMC-Gibbs (refers to [46]). (2) Heuristically select the item for
the t-th recommendation with the aim of maximizing the cumula-
tive reward. Specifically, there are mainly two strategies have been
explored to select the items in interactive collaborative filtering:

Thompson Sampling [3]. At the timestep t for useru, this method
suggests the itemwith themaximum sampled values as it = argmax

i
p̃⊤u,t q̃i,t , where p̃u,t ∼ N(µu,t , Σu,t) and q̃i,t ∼ N(νi,t ,Ψi,t) are
sampled from the posterior distribution of user and item feature
vectors [19].

Upper Confidence Bound. It based on the principle of optimism
in the face of uncertainty, which is to choose the item plausibly
liked by users. In [46], it designs a general solution Generalized
Linear Model Bandit-Upper Confidence Bound (GLM-UCB), which
combined UCB with PMF as

it = argmax
i

(
ρ
(
µ⊤u,tνi,t

)
+ c

√
log t

νi,t

2,Σu,t) .
Here, ρ is a sigmoid function defined as ρ (x) = 1

1+exp(−x) , c is a
constant with respect to t .

νi,t

2,Σu,t is 2-norm based on Σu,t as

νi,t

2,Σu,t = √
ν⊤i,t Σu,tνi,t , which measures the uncertainty of

estimated rate ru,i at the t-th interaction.
The above-discussed approaches show the possible limitation of

MAB based methods: (1) Owing to the difficulty of updating the
posterior distribution for non-linear models, they are only appli-
cable for linear user-item interaction models, which greatly limits
its usage on effective neural networks based models [16, 42]. (2)
A lot of crucial hyper-parameters (e.g., the variance term for prior
distribution and the exploration hyper-parameter c) are introduced,
which increases the difficulty of finding the optimal recommenda-
tions. (3) The sophisticated approaches (Thompson Sampling and
GLM-UCB) are potentially overly pessimistic since they are usu-
ally optimizing the recommendations in the worst case to achieve
provably good regret bounds.

2.3 Meta-learning Based Approach
Meta-learning based approaches aim to learn a learning procedure
that can quickly capture users’ interests after observed a small sup-
port set. As shown in Figure 1 (b), we presented an example frame-
work MELU [23], which adapted Model-Agnostic Meta-Learning
(MAML) [12] for fastly model adaption on cold-start users. Specif-
ically, assume the recommender agent is modeled with a neural

it1
user

ru,it1

exploration
algorithm:
TS, UCB

update
with MCMC-

Gibbs

pu,2,Σu,2pu,1,Σu,1

update
with MCMC-

Gibbs

pu,3,Σu,3

it2 ru,it2

(a) The MAB based approaches for cold-start recommendation.

exploration
algorithm:
TS, UCB

user

θ0

heuristic
selection

optimize
accuracy
with SGD

θ1

greedy
w.r.t.
πθ1

the support set recommendations

(b) Model agnostic meta-learning based approach for cold-start recommendation.

it1
user

ru,it1 it2 ru,it2

u1

greedy
w.r.t.
πu1

F1F1 F2F2

greedy
w.r.t.

F3F3

u2

πu2

(c) The neural interactive collaborative filtering framework.

sequential neural network

optimize
accuracy
with SGD

optimize
accumulative

reward with RL

hidden states

Figure 1: Difference between existing approaches and neural
interactive collaborative filtering framework.

network parameterized with θ , MELU aims to learn an initialization
θ0 that can identify users’ interests after updating θ1 with small
support set D. Formally, the θ0 is learned by minimizing a specific
loss ℓ over the support set D after updating to θ1 as

θ1 = θ0 − αℓ(πθ0 ,D)

θ0 ← θ0 − αℓ(πθ1 ,D),

where πθ is the recommendation policy parameterized by θ . ℓ
usually corresponds to an accuracy measure, such as MSE or Cross
entropy.

The meta-learning approach is appealing since it avoids the com-
plexity of hand-designing the sophisticated exploration policies and
enables us to take advantage of deep neural networks. However,
how to select the support set without compromising users’ experi-
ence has not been concerned in existing meta-learning approaches.
It resulted in two problems: (1) It leads to the recommendation of
highly irrelevant items and terrible user experience at the phase
of constructing the support set. (2) These methods perform lousy
when faced with users’ tastes drifting or poor quality support set
due to its full exploitation strategy and deficiency in actively ex-
ploring users’ interests.

In the following, we address these limitations by employing a
neural network based exploration policy, which directly learns to
explore for interactive collaborative filtering.

Session 4C: Neural Networks and Embedding SIGIR ’20, July 25–30, 2020, Virtual Event, China

751

3 NEURAL INTERACTIVE COLLABORATIVE
FILTERING

We first present the general neural interactive collaborative filtering
framework, elaborating how to formulate the exploration in cold-
start and warm-start recommendation as a meta RL task, a bandit
problem within an MDP. To explore DNNs for modeling user-item
interactions, we then propose an instantiation of NICF, using stack-
ing self-attention neural networks to represent the recommendation
policy under interactive collaborative filtering. Lastly, we present
an efficient policy learning method for interactive collaborative
filtering.

3.1 General Framework
Rather than hand-designing exploration strategies for cold-start or
warm-start users, we take a different approach in this work and aim
to learn a neural network based exploration strategy whereby the
recommender agent can capture users’ interests rapidly for different
users and hence maximize the cumulative users’ engagement in the
system, i.e.,we would like to learn a general procedure (a sequential
neural network) that takes as input a set of items from any user’s
history and produces a scoring function that can be applied to new
test items and balance the goals between learning the user profile
and making accurate recommendations (as shown in Figure 1(c)).

In this formulation, we notice that the interactive collaborative
filtering is equivalent to a meta-learning problem where the objec-
tive is to learn a learning algorithm that can take as the input of
the user’s history st and will output a model (policy function) that
can be applied to new items. From the perspective of meta-learning,
the neural network based policy function is a low-level system,
which learns quickly and is primarily responsible for exploring
users’ interests, and we want to optimize the low-level system with
a slower higher-level system that works across users to tune and
improve the lower-level system [10]. Specifically, for every user u,
the agent executes a sequential neural network based policy πθ (st),
which constantly updates its recommendation policy based on the
recommending items and users’ feedback. The slower higher-level
system optimizes the weights of the sequential neural network in an
end-to-end way to maximize the cumulative reward Gπ (T), which
can be viewed as a reinforcement learning problem and optimized
with RL algorithm.

From the perspective of RL, applying RL to solve cold-start and
warm-start recommendation is also meaningful since the users’
preferences gathered by exploration recommendations can trigger
much more satisfied recommendations, which can be viewed as
the delayed reward for the recommendations and RL is born to
maximize the sum of delayed and immediate reward in a global
view. Therefore, applying RL directly achieves the goal of balancing
between exploration and exploitation for interactive collaborative
filtering. In details, as a RL problem, ⟨S,A, P ,R,γ ⟩ in the MDP are
defined as: (1) State S is a set of states, which is set as the support set
st ∈ S . (2)Action setA is equivalent to item set I in recommendation.
(3) Transition P is the transition function with Pr (st+1 |st , it) being
the probability of seeing state st+1 after taking action it at st . In our
case, the uncertainty comes from user’s rating ru,it w.r.t. it and st .
(4) Reward R is set based on users’ feedback, i.e., the user’s rating.

Self-attention

FFN FFN FFN

(Can stack more)

Rated 1 items’ embedding

Embedding

Layer

Self Attention

Block

Q-value over all items

st

{i1, ru,i1} {i4, ru,i4} {it−1, ru,it−1
}

Input Layer

Add & Normalize

Add & Normalize

FFN FFN

Add & Normalize

Add & Normalize

Policy Layer

ut

Self-attention

Rated 1 item Rated k itemRated 1 itemRated 2 item Rated 3 item

Rated k items’ embedding

Rated k item

Figure 2: The neural architecture for the recommender
agent.

3.2 Self-Attentive Neural Policy
In this work, the exploration policy is parameterized with multi-
channel stacked self-attention neural networks, which separately
capture the information of versatile user behaviors since different re-
warding recommendations for a specific user are usually extremely
imbalanced (e.g., liking items usually are much fewer than disliking
items) [18, 45, 48]. In Figure 2, we presented the neural architec-
ture for exploration policy, which consists of an embedding layer,
self-attentive blocks, and a policy layer.

Embedding Layer. Given st = {i1, ru,i1 , . . . , it−1, ru,it−1 }, the en-
tire set of {it } are converted into item embedding vectors {it } of
dimension d by embedding each it in a continuous space, which,
in the simplest case, is an embedding matrix A ∈ RI×d .

Self-Attention Layer. To better represent the observation st , as
shown in Figure 2, we separately process different rated items by
employing multi-channel stacked self-attentive neural networks.
Denote the items rated with score z as an embedding matrix as Ezt =
[· · · , im , · · ·]

⊤ (∀ru,im = z,m < t). The self-attention operation
takes the embedding Ezt as input, converts it to three matrices
through linear projects, and feeds them into an attention layer

Szt = SA(Ezt) = Attention(EztW z,c ,EztW
z,k ,EztW

z,v),

whereW z,c ,W z,k ,W z,v ∈ Rd×d are the projectionmatrices. These
projections make the model more flexible. Attention function
is the scaled dot-product attention

Attention(C,K ,V) = softmax
(
CK⊤
√
h

)
V ,

where C represents the queries, K the keys and V the values (each
row represents an item). The scale factor

√
h is to avoid overly large

values of the inner product, especially when dimensionality is high.
Due to sequential nature of the recommendations, the attention
layer should only consider the first t − 1 items when formulating

Session 4C: Neural Networks and Embedding SIGIR ’20, July 25–30, 2020, Virtual Event, China

752

the t-th policy. Therefore, we modify the attention by forbidding
all links between Ci and Kj (j > i).

Point-Wise Feed-Forward Layer. To endow the model with non-
linearity and to consider interactions between different latent di-
mensions, we apply a point-wise two-layer feed-forward network
to Szt m (them-th row of the self-attention layer Szt) as

Fzt m = FFN(Szt m) = ReLU(Szt mW
(1) + b(1))W (2) + b(2),

where ReLU(x) = max(0,x) is the rectified linear unit.W (1) and
W (2) are d × d matrics. b(1) and b(2) are d-dimensional vectors.

Stacking Self-Attention Block. The self-attention layer and point-
wise feed-forward layer, which formulates a self-attention block and
can be stacked to learn more complex item transitions. Specifically,
b-th (b > 1) block is defined as:

Sz,bt = SA(Fz,b−1t),

Fz,bt m = FFN(Sz,bt m)

and the 1-st block is defined as Sz,1t = Szt and Fz,1t = Fzt .

Policy Layer. After b self-attention blocks that adaptively and
hierarchically extract information of previously rated items, we
predict the next item score based on

{
Fz,bt

}Rmax

z=1
, where Rmax is

the maximal reward. Denote the predicted cumulative reward of
recommending items as Qθ (st , ·) = [Qθ (st , i1), · · · ,Qθ (st , iN)]

⊤,
the policy layer is processed by two feed-forward layers as,

ut = concat
[
F 1,bt

⊤
, F 2,bt

⊤
, . . . , FRmax,b

t
⊤
]⊤

Qθ (st , ·) = ReLU(utW (1) + b(1))W (2) + b(2),

whereW (1) ∈ RRmaxd×d ,W (2) ∈ Rd×|I | are weight matrices and
b(1) ∈ Rd and b(2) ∈ R |I | are the bias terms. With the estimated
Qθ (st , ·), the recommendation is generated by selecting the item
with maximal Q-value as πθ (st) = argmax

i
Qθ (st , i).

3.3 Policy Learning
Q-Learning. We use Q-Learning [27] to learn the weights θ for

the exploration policy. In the t-th trial, the recommender agent
observes the support set st , and chooses the item it with an ϵ-greedy
policy w.r.t. the approximated value function Qθ (st , ·) (i.e., with
probability 1−ϵ selecting the max Q-value action, with probability ϵ
randomly choosing an action). The agent then receives the response
ru,it from the user and updates the observed set to st+1. Finally, we
store the experience (st ,at , ru,it , st+1) in a large replay bufferM
from which samples are taken in mini-batch training.

We improve the value function Qθ (st , it) by adjusting θ to mini-
mize the mean-square loss function, defined as follows:

ℓ(θ) = E(st ,it ,ru,it ,st+1)∼M
[
(yt −Qθ (st , it))

2] (2)
yt = ru,it + γ max

it+1∈I
Qθ (st+1, it+1),

where yt is the target value based on the optimal Bellman Equa-
tion [34]. By differentiating the loss function w.r.t. θ , we arrive at
the following gradient:

∇θ ℓ (θ) = E(st ,it ,ru,it ,st+1)∼M
[(yt −Qθ (st , it)) ∇θQθ (st , it)] .

Efficient Learning. Usually, training a RL agent is much more
challenging than supervised learning problems [34]. Additionally,
in recommender systems, the large-scale action space and state
space have greatly increased the difficulty of training a reinforce-
ment learning-based recommender agent [4, 50]. To reduce the
difficulty, we adapt a constantly increased γ during the training
as γe = 1

1+(E−e)η , where e is the e-th epoch, E is the total num-
ber of epoch, and η is a hyper-parameter (we set η = 0.2 in the
experiments). Since the larger γ means planning in longer future
horizons for RL, the increasing {γe } can be treated as an increas-
ingly difficult curriculum [2], which gradually guides the learning
agent from 1-horizon (greedy solution), 2-horizon, . . . , to overall
optimal solutions. Therefore, it is much more efficient than finding
the optimal recommender policy from scratch.

4 EXPERIMENTS
In this section, we conduct extensive experiments on three bench-
mark datasets to evaluate the effectiveness of NICF. We mainly
focus on answering the following research questions:

RQ1: How can NICF outperform existing interactive collabora-
tive filtering algorithms for the cold-start users?

RQ2: Can the NICF be applied to warm-start users with drifting
taste, i.e., those whose interests change over time?

RQ3: What’s the influence of various components in NICF?
RQ4: What kind of knowledge learned by NICF for cold-start

recommendations?
In what follows, we will first introduce our experimental settings,

followed by answering the above four research questions.

4.1 Experimental Settings
4.1.1 Datasets. We experiment with three real-world bench-

mark datasets: MovieLens 1M4, EachMovie5, and Netflix6. Table 1
lists the statistics of the three datasets.

Due to the interactive nature of the recommender system, an
online experiment with true interactions from real users would be
ideal, but it is not always possible [25, 46]. Following the setting
of interactive collaborative filtering [16, 46], we assume that the
ratings recorded in the datasets are users’ instinctive actions, not
biased by the recommendations provided by the system. In this way,
the records can be treated as unbiased to represent the feedback in
an interactive setting. Additionally, we assume that the rating is no
less than 4 is the satisfied recommendation, otherwise dissatisfied.
These assumptions define a simulation environment for training
and evaluating our proposed algorithm and the learning agent is
expected to keep track of users’ interests and recommend successful
items throughout a long time.

4.1.2 Compared Methods. We compare our model with state-
of-the-art methods from different types of recommendation ap-
proaches, including:

• Random: The random policy is executed in every recom-
mendation, which is a baseline used to estimate the worst
performance that should be obtained.
• Pop: It ranks the items according to their popularity mea-
sured by the number of being rated. This is a widely used

Session 4C: Neural Networks and Embedding SIGIR ’20, July 25–30, 2020, Virtual Event, China

753

Table 1: Summary Statistics of Datasets.

Dataset MovieLens (1M) EachMovie Netflix
Users 6,040 1,623 480,189
Items 3,706 61,265 17,770
Interactions 1,000,209 2,811,718 100,480,507
Interactions Per User 165.60 1732.42 209.25
Interactions Per Item 269.89 45.89 5654.50

simple baseline. Although it is not personalized, it is surpris-
ingly competitive in evaluation, as users tend to consume
popular items.
• MF [22]: It suggests recommendations based on the ratings
of other users who have similar ratings as the target user.
For cold-start recommendation, we always greedy w.r.t. the
estimated scores and update users’ latent factor after every
interaction.
• MLP: Multi-layer perceptron has been a common practice
for non-linear collaborative filtering [16, 42] due to its supe-
riority. We deploy a MLP based recommender agent using
the architecture mentioned in [16].
• BPR [31]: It optimizes the MFmodel with a pairwise ranking
loss, which is a state-of-the-art model for item recommenda-
tion.
• ICF [46]: Interactive collaborative filtering combined the
probabilistic matrix factorization [26] with different explo-
ration techniques for recommender system, including GLM-
UCB (generalized LinUCB [25]), TS [3] and ϵ-Greedy [34],
which are strong baselines for handling exploration/exploitation
dilemma in recommender system.
• MeLU [23]:MeLU is a state-of-the-artmethod, which adapted
MAML [12] for solving the cold start problem by treating it
as a few-shot task.
• NICF: Our proposed approach for learning to explore in
cold-start or warm-start recommendation.

4.1.3 Evaluation Metrics. Given a cold-start or warm-start user,
a well-defined exploration strategy should recommend the items to
deliver the maximal amount of information useful for estimating
users’ preferences. Previously, this kind of exploration is achieved
by improving the diversity of recommendations [8, 49]. Hence, to
study the learned exploration strategy, we evaluate the model on
both the accuracy and diversity of generated recommendations.
Given the ordered list of items, we adopt three widely used metrics
in recommender system:

• Cumulative Precision@T . A straightforward measure is
the number of positive interactions collected during the total
T interactions,

precision@T =
1

users
∑
users

T∑
t=1

bt . (3)

For both datasets, we define bt = 1 if ru,it >= 4, and 0
otherwise.

• Cumulative Recall@T . We can also check for the recall
during T timesteps of the interactions,

recall@T =
1

users
∑
users

T∑
t=1

bt
satisfied items . (4)

• Cumulativeα-NDCG@T .α-NDCG@T generalizeNDCG@T
to diversity of the recommendation list, which formulated as

α-NDCG@T =
1
Z

T∑
t=1

G@t

log(1 + t) . (5)

Here, G@t =
∑
∀i ∈C (1 − α)ci,t−1 with ci,t as the number

of times that topic i has appeared in the ranking of the rec-
ommendation list up to (and including) the t-th position.
Here, the topic is the property of items or users. Z is the
normalization factor.

4.1.4 Parameter Setting. These datasets are split into three user-
disjoint sets: 85% users’ data as the training set and their ratings are
used to learn the parameters for the models, 5% users’ data used for
tuning hyper-parameters, including the learning rate, hidden units,
and early stop. The last 10% of users go through the interactive rec-
ommendation process during 40 time-steps which are used to eval-
uate the effectiveness of different methods. For all methods except
Random and Pop, grid search is applied to find the optimal settings.
These include latent dimensions d from {10, 20, 30, 40, 50}, and the
learning rate from {1, 0.1, 0.01, 0.001, 0.0001}. We report the result
of eachmethodwith its optimal hyper-parameter settings on the val-
idation data. We implement our proposed methods with Tensorflow
and the code is available at https://github.com/zoulixin93/NICF. The
optimizer is the Adam optimizer [20]. We stack two self-attentive
blocks in the default setting. The capacity of the replay buffer for
Q-learning is set to 10000 in experiments. The exploration factor ϵ
decays from 1 to 0 during the training of the neural network.

4.2 Performance comparison on cold-start
cases (RQ1)

Table 2 reports the performance of accumulative precision and
recall throughout 40 trial recommendations for cold-start cases.
The results are quite consistent with our intuition. We have the
following observations:

(1) Our method NICF outperforms other baselines on three
benchmark datasets. We can see that NICF achieves the best perfor-
mance on the precision and recall over three benchmark datasets,
significantly outperforming the state-of-the-art methods by a large
margin (on average, the relative improvement on cumulative pre-
cision@40 over the best baseline are 9.43%, 4.59% and 6.65% for
three benchmark datasets, respectively). It means that for cold-start
recommendation, our proposed method can quickly capture users’
interests, and adapt its strategy to cater to new users.

(2) The GLM-UCB and TS algorithms generally work better than
the greedy methods MF, BRP, MLP, and heuristic search method ϵ-
greedy. In most cases, TS and GLM-UCB also exceed other baseline
algorithms on EachMovie and Netflix datasets (according to the
cumulative precision and recall). It means that the exploration
by considering the uncertainties of the user and items according
to their probability distributions is more promising than random

Session 4C: Neural Networks and Embedding SIGIR ’20, July 25–30, 2020, Virtual Event, China

754

https://github.com/zoulixin93/NICF

Table 2: Cold-start recommendation performance of different models on MovieLens (1M), EachMovie and Netflix Dataset.

Dataset MovieLens (1M) EachMovie Netflix
Measure Cumulative Precision Cumulative Precision Cumulative Precision

T 5 10 20 40 5 10 20 40 5 10 20 40
Random 0.2150 0.4400 0.8983 1.8100 0.2454 0.4663 0.7730 1.4233 0.0600 0.1267 0.2683 0.5000
Pop 2.4933 4.6383 8.6267 15.6100 4.0123 6.3497 10.2699 17.2699 2.1283 4.0217 7.3183 13.4067
MF 2.6947 4.9684 9.1579 16.0947 4.0534 6.3167 10.3582 17.6167 2.4667 4.5500 8.3333 14.9500
BPR 2.9579 5.4842 9.7895 16.6526 4.0534 6.4552 10.4598 17.9333 2.2833 4.5512 8.4532 15.3667
MLP 2.7158 5.3895 9.8105 16.9158 4.1041 6.9384 11.2740 18.8425 2.5491 4.8966 8.7241 15.9077

ϵ-greedy 2.9714 5.6286 10.4286 17.1429 4.1126 6.9790 11.3846 19.0420 2.6875 5.1312 9.1250 16.0438
TS 3.0968 5.8713 11.0323 18.3548 4.1596 7.6422 13.0020 22.7431 2.7841 5.3864 9.6818 17.2841

GLM-UCB 3.2917 6.2083 11.5833 19.0932 4.1761 7.8586 13.5556 23.9293 2.8739 5.4752 9.9375 17.9125
MELU 3.3636 6.3182 11.9545 19.7273 4.1316 7.8421 13.3816 23.9605 2.8298 5.4711 9.8541 17.3951
NICF 3.5556∗ 6.7778∗ 12.9444∗ 21.5875∗ 4.2270∗ 7.8957∗ 14.5215∗ 25.0613∗ 2.9641∗ 5.7647∗ 10.4542∗ 18.5523∗

Measure Cumulative Recall Cumulative Recall Cumulative Recall
T 5 10 20 40 5 10 20 40 5 10 20 40

Random 0.0011 0.0027 0.0051 0.0106 0.0001 0.0001 0.0003 0.0004 0.0003 0.0007 0.0014 0.0025
Pop 0.0268 0.0443 0.0797 0.1375 0.0445 0.0541 0.0906 0.1295 0.0215 0.0390 0.0672 0.1152
MF 0.0300 0.0497 0.0823 0.1443 0.0477 0.0536 0.0908 0.1301 0.0247 0.0454 0.0749 0.1198
BPR 0.0353 0.0534 0.0926 0.1483 0.0477 0.0592 0.0911 0.1321 0.0233 0.0459 0.0758 0.1201
MLP 0.0305 0.0526 0.0961 0.1490 0.0485 0.0709 0.1010 0.1360 0.0258 0.0472 0.0775 0.1220

ϵ-greedy 0.0358 0.0572 0.1083 0.1522 0.0490 0.0712 0.1062 0.1392 0.0264 0.0482 0.0788 0.1241
TS 0.0371 0.0601 0.1138 0.1693 0.0493 0.0798 0.1102 0.1452 0.0270 0.0508 0.0817 0.1280

GLM-UCB 0.0382 0.0614 0.1147 0.1853 0.0507 0.0817 0.1120 0.1488 0.0281 0.0524 0.0862 0.1332
MELU 0.0389 0.0639 0.1173 0.1971 0.0501 0.0810 0.1113 0.1505 0.0274 0.0519 0.0855 0.1292
NICF 0.0409∗ 0.0652∗ 0.1202∗ 0.2145∗ 0.0511∗ 0.0821∗ 0.1195∗ 0.1523∗ 0.0284∗ 0.0535∗ 0.0901∗ 0.1374∗

“ ∗ ” indicates the statistically significant improvements (i.e., two-sided t-test with p < 0.05) over the best baseline.

explorations. Nevertheless, TS and GLM-UCB fail to outperform
our proposed NICF algorithms.

(3) Overall, the meta-learning method, MELU, consistently out-
performs the traditional baselines on average as shown in Table
2, and is much better than all other baselines on MovieLen (1M),
which indicates that meta-learning method helps improve the rec-
ommendation accuracy on cold-start recommendation.

4.3 Performance comparison on warm-start
cases with taste drift (RQ2)

Through this experiment, we aim to answer the question of whether
the algorithms are also applicable to warm-start users to follow
up their interests throughout the interactions, especially when
their tastes are changing over time. To do this, we first divide the
rating records of the users (whose ratings are more than 80) into
two periods (set 1 and set 2). For the selected user, the set 1 (20
items) is used as the historical interactions for the user and set 2 as
the simulation for his/her taste drift. Then, we employ the genre
information of the items as an indication of the user interest [46].
That is, we calculate the cosine similarity between the genre vectors
of the two periods. We choose the users with the smallest cosine
similarity as an indication that they have significant taste drifting
across the two periods. Since the genre information of EachMovie
is not available, we only conduct experiments on MovieLens (1M)
and Netflix datasets (the genre of Netflix dataset is crawled by using

IMDBpy7). Specifically, we respectively selected 4,600 users and
96,037 users from MovieLens (1M) and Netflix datasets to train and
evaluate on warm-start recommendations.

Table 3 reports the performance of accumulative precision and
recall throughout 40 trial recommendations for warm-start users
with drifting interests. In Table 3, it can be seen that our proposed
methods outperform the baselines for both datasets. When com-
pared with the best baseline, the improvement is up to 7.92% on
MovieLens (1M) dataset, and 6.43% on the Netflix dataset, which
means that for warm-start users, our proposed method can keep
track on users’ drifting taste and adapt its strategy to cater to users.

4.4 Ablation Study (RQ3)
Since there are many components in our framework, we analyze
their impacts via an ablation study. Table 4 shows the performance
of our default method and its 4 variants on three datasets (with d =
30). We introduce the variants and analyze their effect respectively:

(1) LSTM: Replacing the self-attention blocks with LSTM cell,
which is used to verify the effectiveness of self-attention on in-
teractive collaborative filtering. Specifically, we adopt a two-layer
LSTM with the hidden dimension of 30. The results imply that
applying stacked self-attention blocks is beneficial for interactive
collaborative filtering.

7https://github.com/alberanid/imdbpy

Session 4C: Neural Networks and Embedding SIGIR ’20, July 25–30, 2020, Virtual Event, China

755

https://github.com/alberanid/imdbpy

Table 3:Warm-start recommendation performance of differ-
ent models on MovieLens (1M) and Netflix Dataset.

Dataset MovieLens (1M) Netflix
Measure Cumulative Precision Cumulative Precision

T 5 10 20 40 5 10 20 40
Random 0.2779 0.5284 1.0232 1.9305 0.0724 0.1281 0.2953 0.5877
Pop 1.8589 3.6105 6.8926 12.4758 1.8162 3.6128 6.7883 13.3120
MF 2.2527 4.4416 8.1444 14.5966 1.9466 3.8221 7.3381 14.1708
BPR 2.3850 4.7084 8.6651 15.5513 2.1325 4.0602 7.4819 14.3373
MLP 2.4654 4.8640 8.9881 16.1504 2.0784 4.0941 7.9098 15.3098

ϵ -greedy 2.5198 4.9851 9.2302 16.6015 2.2817 4.3803 8.2676 15.8310
TS 2.6570 5.2190 9.6623 17.3668 2.2788 4.4779 8.7389 16.8805

GLM-UCB 2.8237 5.5491 10.2688 18.4509 2.3505 4.6121 9.0374 17.4907
MELU 2.8237 5.5051 10.2120 18.3220 2.6230∗ 4.9672 9.4918 18.1475
NICF 3.0097∗5.9385∗10.9935∗19.7735∗ 2.6077 5.1215∗10.0829∗19.3149∗

Measure Cumulative Recall Cumulative Recall
T 5 10 20 40 5 10 20 40

Random 0.0017 0.0031 0.0057 0.0105 0.0005 0.0008 0.0014 0.0028
Pop 0.0144 0.0273 0.0506 0.0892 0.0107 0.0202 0.0386 0.0809
MF 0.0189 0.0370 0.0640 0.1110 0.0110 0.0211 0.0391 0.0814
BPR 0.0193 0.0379 0.0663 0.1150 0.0113 0.0215 0.0397 0.0819
MLP 0.0201 0.0389 0.0672 0.1190 0.0111 0.0217 0.0402 0.0821

ϵ -greedy 0.0209 0.0396 0.0679 0.1200 0.0111 0.0206 0.0361 0.0671
TS 0.0213 0.0403 0.0684 0.1208 0.0110 0.0210 0.0371 0.0716

GLM-UCB 0.0219 0.0410 0.0692 0.1213 0.0116 0.0218 0.0378 0.0726
MELU 0.0219 0.0412 0.0690 0.1210 0.0130∗ 0.0223 0.0381 0.0740
NICF 0.0224∗0.0420∗ 0.0709∗ 0.1300∗ 0.0128 0.0228∗ 0.0390∗ 0.0752∗

“ ∗ ” indicates the statistically significant improvements
(i.e., two-sided t -test with p < 0.05) over the best baseline.

Table 4: Ablation analysis (Cumulative Precision@40) on
three benchmark datasets. Performance better than default
version is boldfaced. ’↓’ indicates a severe performance drop
(more than 10%).

Architecture MovieLens(1M) EachMovie Netflix
Default 21.5875 25.0613 18.5523
LSTM 20.7895 23.2881 17.8185
γ = 0 19.7273↓ 23.1656 17.1429

0 Block (b=0) 16.7368↓ 17.0276↓ 14.1250↓
1 Block (b=1) 20.9818 24.9333 18.0429
3 Block (b=3) 21.4544 25.1063 18.6074
Multi-Head 21.4167 24.2207 18.1502

(2) γ = 0: γ = 0 means learning without using RL, i.e., training a
multi-channel stacked self-attention recommendation policy with-
out consideration about the delayed reward, i.e., the model delivers
items in full exploitation way without consideration of exploration.
Not surprisingly, results are much worse than the default setting.

(3) Number of blocks: Not surprisingly, results are inferior with
zero blocks, since the model would only depend on the last item.
The variant with one block performs reasonably well and three
blocks performance a little better than two blocks, meaning that
the hierarchical self-attention structure is helpful to learn more
complex item transitions.

Figure 3: The recommendation diversity on cold-start phase.

(4) Multi-head: The authors of Transformer [37] found that it is
useful to use ’multi-head’ attention. However, performance with
two heads is consistently and slightly worse than single-head at-
tention in our case. This might owe to the small d in our problem
(d = 512 in Transformer), which is not suitable for decomposition
into smaller subspaces.

4.5 Analysis on Diversity (RQ4)
Diversity and accuracy. Some existing works [8] explore users’

interests by improving the recommendation diversity. It is an indi-
rect method to keep exploration, and the assumption has not been
verified. Intuitively, the diverse recommendation brings more infor-
mation about users’ interests or item attributes. Here, we conduct
experiments to see whether NICF, which directly learn to explore,
can improve the recommendation diversity. Since the genre infor-
mation is only available on MovieLens (1M) and Netflix, we mainly
analyze the recommendation diversity on these two datasets. In
Figure 3, the accumulative α-NDCG has been shown over the first
40 round recommendations. We can see that the NICF, learned by
directly learning to explore, favors for recommending more diverse
items. The results verify that exploring users’ interests can increase
the recommendation diversity and enhancing diversity is also a
means of improving exploration.

The knowledge learned by NICF. To gain a better insight into
NICF, we take a close look at the exploration policy, i.e., visualizing
the sequential decision tree learned by NICF. Due to the space
limitation, we only present the first four round recommendations
on MovieLens (1M) dataset. As shown in the Figure 4, without
using the genre information, NICF can explore users’ interests by
recommending similar movies with some different topics if the
user liked this movie, or changing the genre of the movies if the
movie has been negative labeled, which indicates that NICF can
effectively track users’ interests and adapt its strategy to balance
the exploration/exploitation on cold-start recommendations.

Session 4C: Neural Networks and Embedding SIGIR ’20, July 25–30, 2020, Virtual Event, China

756

Ac: Action
Ad: Adventure
Ro: Romance
Sc: Sci-Fi
Wa: War
Dr: Drama
Ho: Horror
Th: Thriller
Cr: Criminal

77 Star War IV

Ac|Ad|Ro|Sc|Wa

Raiders of Lost Ark

Ac|Ad

Empire Strikes Back

Ac|Ad|Dr|Ro|Sc|Wa

English Patient

Dr|Ro|Wa

Contact

Dr|Sc

83 Return of Jedi

Ac|Ad|Ro|Sc|Wa

96 Fargo

Cr|Dr|Th

Silence of Lambs

Dr|Th

Titanic

Dr|Ro

96 Scream

Ho|Th

Independence Day

Ac|Sc|Wa

English Patient

Dr|Ro|Wa

Contact

Dr|Sc

96 Scream

Ho|Th

Air Force One

Ac|Th

dissatisfied satisfied

satisfieddissatisfied dissatisfied satisfied

satisfieddissatisfieddissatisfied satisfiedsatisfieddissatisfieddissatisfied satisfied

Figure 4: The sequential decision tree learned by NICF without using the genre information of movies.

5 RELATEDWORK
We summarize the related literature: traditional recommender sys-
tem, interactive recommender system and meta-learning based rec-
ommender system as follows.

Traditional recommender system. Being supervised by the history
records and making recommendations with maximum estimated
score have been the common practice in majority models, includ-
ing factorization methods [17, 22, 30] and different kinds of deep
neural models, such as multilayer perceptron [7, 16], denoising
auto-encoders [41], convolutional neural network (CNN) [35], re-
current neural network (RNN) [14, 24], memory network [6] and
attention architectures [1, 47]. Based on the partially observed his-
torical interactions, these existing models usually learn the user
profile [5, 14, 15, 47] and predict a customer’s feedback by a learn-
ing function to maximize some well-defined evaluation metrics
in the ranking, such as Precision and NDCG [9]. However, most
of them are myopic because the learned policies are greedy with
estimating customers’ feedback and unable to purposely explore
users’ interests for cold-start or warm-start users in a long term
view.

Interactive recommender system. Interactive recommendation as
a trend for the development of recommender systems has been
widely studied in recent years. There are mainly two directions for
the research: (1) contextual bandit; (2) reinforcement learning. (1)
In contextual bandit, the main focus is on how to balance explo-
ration and exploitation and achieving a bounded regret (i.e., the
performance gap between optimal recommendations and suggested
recommendations) under worst cases. Hence, many contextual ban-
dit based recommender systems have been developed for dealing
with different recommendation tasks, such as news recommenda-
tion [25], diversify movie set [29], collaborative filtering [39, 46],
online advertising[43] and e-commerce recommendation [40]. How-
ever, they are usually intractable for non-linear models and poten-
tially overly pessimistic about the recommendations. (2) Reinforce-
ment learning is suitable to model the interactive recommender sys-
tem. However, currently, there are still many difficulties in directly

applying RL, such as the off-policy training [4, 50], the off-policy
evaluation [13] and the large action spaces [11, 44] and its topics
are concentrated on optimizing the metrics with delayed attributes,
such as diversity [49], browsing depth [48]. As far as we know, we
are the first work analyzing its usage on exploring users’ interests
for interactive collaborative filtering.

Meta-learning based recommender system. Meta-learning, also
called learning-to-learn, aims to train a model that can rapidly
adapt to a new task with a few-shot of samples [12, 21, 32], which
is naturally suitable for solving the cold-start problem after col-
lecting a handful of trial recommendations. For example, Vartak
et al. [36] treated recommendation for one user as one task, and
exploit learning to adopt neural networks across different tasks
based on task information. Lee et al. [23] proposed to learn the
initial weights of the neural networks for cold-start users based on
Model-agnostic meta-learning (MAML) [12]. At the same time, Pan
et al. [28] proposed a meta-learning based approach that learns to
generate desirable initial embeddings for new ad IDs. However, all
these methods ignored the performance on the support set, which
also greatly influence the user engagement on the recommender
system. Additionally, the full exploitation principle after few-shot
trials inevitably led to the local optimal recommendations.

6 CONCLUSIONS
In this work, we study collaborative filtering in an interactive set-
ting and focus on recommendations for cold-start users or warm-
start users with taste drifting. To quickly catch up with users’ in-
terests, we propose to represent the exploration strategy with a
multi-channel stacked self-attention neural network and learn it
from the data. In our proposed method, the exploration strategy is
encoded in the weights of the neural network, which are trained
with efficient Q-learning by maximizing the cold-start or warm-
start users’ satisfaction in limited trials. The key insight is that the
satisfying recommendations triggered by the exploration recom-
mendation can be viewed as the delayed reward for the information

Session 4C: Neural Networks and Embedding SIGIR ’20, July 25–30, 2020, Virtual Event, China

757

gathered by exploration recommendation, and the exploration strat-
egy that seamlessly integrates constructing the user profile into
making accurate recommendations, therefore, can be directly opti-
mized by maximizing the overall satisfaction with reinforcement
learning. To verify its effectiveness, extensive experiments and anal-
yses conducted on three benchmark collaborative filtering datasets
have demonstrated the knowledge learned by our proposed method
and its advantage over the state-of-the-art methods.

7 ACKNOWLEDGEMENT
This research was supported by the Natural Sciences and Engineer-
ing Research Council (NSERC) of Canada. The authors gratefully
appreciate all the anonymous reviewers for their valuable com-
ments.

REFERENCES
[1] Ting Bai, Lixin Zou, Wayne Xin Zhao, Pan Du, Weidong Liu, Jian-Yun Nie,

and Ji-Rong Wen. 2019. CTRec: A Long-Short Demands Evolution Model for
Continuous-Time Recommendation. In SIGIR’19. 675–684.

[2] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. 2009.
Curriculum learning. In ICML’09. ACM, 41–48.

[3] Olivier Chapelle and Lihong Li. 2011. An empirical evaluation of thompson
sampling. In NIPS’11. 2249–2257.

[4] Minmin Chen, Alex Beutel, Paul Covington, Sagar Jain, Francois Belletti, and
Ed H Chi. 2019. Top-k off-policy correction for a REINFORCE recommender
system. InWSDM’19. ACM, 456–464.

[5] Weijian Chen, Yulong Gu, Zhaochun Ren, Xiangnan He, Hongtao Xie, Tong Guo,
Dawei Yin, and Yongdong Zhang. 2019. Semi-supervised user profiling with
heterogeneous graph attention networks. In IJCAI’19. 2116–2122.

[6] Xu Chen, Hongteng Xu, Yongfeng Zhang, Jiaxi Tang, Yixin Cao, Zheng Qin, and
Hongyuan Zha. 2018. Sequential recommendation with user memory networks.
In WSDM’18. ACM, 108–116.

[7] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.
2016. Wide & deep learning for recommender systems. In Proceedings of the 1st
workshop on deep learning for recommender systems. ACM, 7–10.

[8] Peizhe Cheng, Shuaiqiang Wang, Jun Ma, Jiankai Sun, and Hui Xiong. 2017.
Learning to recommend accurate and diverse items. InWWW’17. 183–192.

[9] Charles LA Clarke, Maheedhar Kolla, Gordon V Cormack, Olga Vechtomova,
Azin Ashkan, Stefan Büttcher, and Ian MacKinnon. 2008. Novelty and diversity
in information retrieval evaluation. In SIGIR’08. ACM, 659–666.

[10] Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter
Abbeel. 2016. RL2 : Fast reinforcement learning via slow reinforcement learning.
arXiv preprint arXiv:1611.02779 (2016).

[11] Gabriel Dulac-Arnold, Richard Evans, Hado van Hasselt, Peter Sunehag, Timothy
Lillicrap, Jonathan Hunt, Timothy Mann, Theophane Weber, Thomas Degris, and
Ben Coppin. 2015. Deep reinforcement learning in large discrete action spaces.
arXiv preprint arXiv:1512.07679 (2015).

[12] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic meta-
learning for fast adaptation of deep networks. In ICML’17. JMLR, 1126–1135.

[13] Alexandre Gilotte, Clément Calauzènes, Thomas Nedelec, Alexandre Abraham,
and Simon Dollé. 2018. Offline a/b testing for recommender systems. InWSDM’18.
ACM, 198–206.

[14] Yulong Gu, Zhuoye Ding, Shuaiqiang Wang, and Dawei Yin. 2020. Hierarchical
User Profiling for E-commerce Recommender Systems. InWSDM’20. 223–231.

[15] Yulong Gu, Jiaxing Song, Weidong Liu, and Lixin Zou. 2016. HLGPS: a home
location global positioning system in location-based social networks. In ICDM’16.
IEEE, 901–906.

[16] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. InWWW’17. 173–182.

[17] Patrik O Hoyer. 2004. Non-negative matrix factorization with sparseness con-
straints. Journal of machine learning research 5, Nov (2004), 1457–1469.

[18] Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recom-
mendation. In ICDM’18. IEEE, 197–206.

[19] Emilie Kaufmann, Nathaniel Korda, and Rémi Munos. 2012. Thompson sampling:
An asymptotically optimal finite-time analysis. In International Conference on
Algorithmic Learning Theory. Springer, 199–213.

[20] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[21] Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov. 2015. Siamese neural
networks for one-shot image recognition. In ICML’15 deep learning workshop,

Vol. 2.
[22] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-

niques for recommender systems. Computer 8 (2009), 30–37.
[23] Hoyeop Lee, Jinbae Im, Seongwon Jang, Hyunsouk Cho, and Sehee Chung. 2019.

MeLU: Meta-Learned User Preference Estimator for Cold-Start Recommendation.
In SIGKDD’19. ACM, 1073–1082.

[24] Jing Li, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Tao Lian, and Jun Ma. 2017.
Neural attentive session-based recommendation. In CIKM’17. ACM, 1419–1428.

[25] Lihong Li, Wei Chu, John Langford, and Robert E Schapire. 2010. A contextual-
bandit approach to personalized news article recommendation. In WWW’10.
ACM, 661–670.

[26] Andriy Mnih and Ruslan R Salakhutdinov. 2008. Probabilistic matrix factorization.
In NIPS’08. 1257–1264.

[27] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602 (2013).

[28] Feiyang Pan, Shuokai Li, Xiang Ao, Pingzhong Tang, and Qing He. 2019. Warm
Up Cold-start Advertisements: Improving CTR Predictions via Learning to Learn
ID Embeddings. In SIGIR’19. ACM, 695–704.

[29] Lijing Qin, Shouyuan Chen, and Xiaoyan Zhu. 2014. Contextual combinatorial
bandit and its application on diversified online recommendation. In SDM’14.
SIAM, 461–469.

[30] Steffen Rendle. 2010. Factorization machines. In ICDM’10. IEEE, 995–1000.
[31] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.

2009. BPR: Bayesian personalized ranking from implicit feedback. InUAI’09. AUAI
Press, 452–461.

[32] Adam Santoro, Sergey Bartunov,MatthewBotvinick, DaanWierstra, and Timothy
Lillicrap. 2016. Meta-learning with memory-augmented neural networks. In
ICML’16. JMLR, 1842–1850.

[33] Harald Steck, Roelof van Zwol, and Chris Johnson. 2015. Interactive recommender
systems: Tutorial. In RecSys’15. ACM, 359–360.

[34] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[35] Jiaxi Tang and Ke Wang. 2018. Personalized top-n sequential recommendation
via convolutional sequence embedding. InWSDM’18. ACM, 565–573.

[36] Manasi Vartak, Arvind Thiagarajan, ConradoMiranda, Jeshua Bratman, andHugo
Larochelle. 2017. A meta-learning perspective on cold-start recommendations
for items. In NIPS’17. 6904–6914.

[37] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NIPS’17. 5998–6008.

[38] Hao Wang, Naiyan Wang, and Dit-Yan Yeung. 2015. Collaborative deep learning
for recommender systems. In SIGKDD’15. ACM, 1235–1244.

[39] Huazheng Wang, Qingyun Wu, and Hongning Wang. 2017. Factorization Bandits
for Interactive Recommendation.. In AAAI’17. 2695–2702.

[40] Qingyun Wu, Hongning Wang, Liangjie Hong, and Yue Shi. 2017. Returning is
believing: Optimizing long-term user engagement in recommender systems. In
CIKM’17. ACM, 1927–1936.

[41] Yao Wu, Christopher DuBois, Alice X Zheng, and Martin Ester. 2016. Collabo-
rative denoising auto-encoders for top-n recommender systems. In WSDM’16.
ACM, 153–162.

[42] Hong-Jian Xue, Xinyu Dai, Jianbing Zhang, Shujian Huang, and Jiajun Chen.
2017. Deep Matrix Factorization Models for Recommender Systems.. In IJCAI’17.
3203–3209.

[43] Chunqiu Zeng, QingWang, ShekoofehMokhtari, and Tao Li. 2016. Online context-
aware recommendation with time varying multi-armed bandit. In SIGKDD’16.
ACM, 2025–2034.

[44] Xiangyu Zhao, Long Xia, Liang Zhang, Zhuoye Ding, Dawei Yin, and Jiliang
Tang. 2018. Deep reinforcement learning for page-wise recommendations. In
RecSys’18. ACM, 95–103.

[45] Xiangyu Zhao, Liang Zhang, Zhuoye Ding, Long Xia, Jiliang Tang, and Dawei Yin.
2018. Recommendations with negative feedback via pairwise deep reinforcement
learning. In SIGKDD’18. ACM, 1040–1048.

[46] Xiaoxue Zhao, Weinan Zhang, and Jun Wang. 2013. Interactive collaborative
filtering. In CIKM’13. ACM, 1411–1420.

[47] Guorui Zhou, Xiaoqiang Zhu, Chenru Song, Ying Fan, Han Zhu, XiaoMa, Yanghui
Yan, Junqi Jin, Han Li, and Kun Gai. 2018. Deep interest network for click-through
rate prediction. In SIGKDD’18. 1059–1068.

[48] Lixin Zou, Long Xia, Zhuoye Ding, Jiaxing Song, Weidong Liu, and Dawei Yin.
2019. Reinforcement Learning to Optimize Long-term User Engagement in
Recommender Systems. In SIGKDD’19. 2810–2818.

[49] Lixin Zou, Long Xia, Zhuoye Ding, Dawei Yin, Jiaxing Song, and Weidong Liu.
2019. Reinforcement Learning to Diversify Top-N Recommendation. In DAS-
FAA’19. Springer, 104–120.

[50] Lixin Zou, Long Xia, Pan Du, Zhuo Zhang, Ting Bai, Weidong Liu, Jian-Yun Nie,
and Dawei Yin. 2020. Pseudo Dyna-Q: A Reinforcement Learning Framework
for Interactive Recommendation. InWSDM’20. 816–824.

Session 4C: Neural Networks and Embedding SIGIR ’20, July 25–30, 2020, Virtual Event, China

758

	Abstract
	1 Introduction
	2 Preliminary
	2.1 A Multi-Armed Bandit Formulation
	2.2 Multi-Armed Bandit Based Approaches
	2.3 Meta-learning Based Approach

	3 Neural Interactive Collaborative Filtering
	3.1 General Framework
	3.2 Self-Attentive Neural Policy
	3.3 Policy Learning

	4 Experiments
	4.1 Experimental Settings
	4.2 Performance comparison on cold-start cases (RQ1)
	4.3 Performance comparison on warm-start cases with taste drift (RQ2)
	4.4 Ablation Study (RQ3)
	4.5 Analysis on Diversity (RQ4)

	5 Related Work
	6 Conclusions
	7 Acknowledgement
	References

