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ABSTRACT
Hierarchical user profiling that aims to model users’ real-time in-
terests in different granularity is an essential issue for personal-
ized recommendations in E-commerce. On one hand, items (i.e.
products) are usually organized hierarchically in categories, and
correspondingly users’ interests are naturally hierarchical on dif-
ferent granularity of items and categories. On the other hand, mul-
tiple granularity oriented recommendations become very popular
in E-commerce sites, which require hierarchical user profiling in
different granularity as well. In this paper, we propose HUP, a
Hierarchical User Profiling framework to solve the hierarchical
user profiling problem in E-commerce recommender systems. In
HUP, we provide a Pyramid Recurrent Neural Networks, equipped
with Behavior-LSTM to formulate users’ hierarchical real-time in-
terests at multiple scales. Furthermore, instead of simply utilizing
users’ item-level behaviors (e.g., ratings or clicks) in conventional
methods, HUP harvests the sequential information of users’ tem-
poral finely-granular interactions (micro-behaviors, e.g., clicks on
components of items like pictures or comments, browses with nav-
igation of the search engines or recommendations) for modeling.
Extensive experiments on two real-world E-commerce datasets
demonstrate the significant performance gains of the HUP against
state-of-the-art methods for the hierarchical user profiling and
recommendation problems. We release the codes and datasets at
https://github.com/guyulongcs/WSDM2020_HUP.
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• Information systems→Personalization;Recommender sys-
tems.
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1 INTRODUCTION

Figure 1: Hierarchical recommendations in Amazon
In the era of Internet, recommender systems are playing crucial

roles in various applications such as E-commerce portals (e.g. Ama-
zon, JD.com, Alibaba), social networking websites like Facebook,
video-sharing sites like Youtube, visual discovery sites like Pinterest
and so on. In practice, User Profiling [5, 11, 18, 24, 33, 38] is one
of the most important phases in recommender systems. It yields
profile vectors, which formally represent users’ interests by deeply
understanding their historical interactions, can be used for candi-
date generation [31, 42], click-through rate prediction [4, 39, 40],
conversion rate prediction [3, 16] and long-term user engagement
optimization [34–37, 44–46].

Recently, modeling users’ hierarchical real-time interests is emerg-
ing to be a crucial issue in E-commerce recommender systems.
Firstly, items (i.e. products) in E-commerce sites are typically orga-
nized in hierarchical catalogue. Correspondingly, users’ interests
naturally lie hierarchically on multiple granularity of items and
categories. Secondly, different granularity of recommendations (e.g.
item, topic and category) become very popular in E-commerce sites,
and such scenarios require hierarchical user profiling in different
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Figure 2: Hierarchical views of Micro behaviors of a user in JD.com

granularity as well. For instance, Figure 1 illustrates a real example
of hierarchical recommendations in Amazon. The left side of the
figure recommends some items (mobile phones) to a user, while
the right side shows a list of recommendations on the categories
of “phone accessories", “chargers" and so on. Category recommen-
dation can help the recommender systems quickly figure out the
main interest of the user and make better recommendations.

Existing user profiling methods mainly focus on item recom-
mendations, usually based on users’ item-level responses like rat-
ings [20] or clicks [14]. Among existing methods, latent factor mod-
eling is a popular branch, including matrix factorization [13, 20, 38],
neural embedding [8, 10], etc. Generally they learn a unified embed-
ding for the target user to represent her interests on the items based
on her historical behaviors. Recently, recurrent neural networks
(RNN) have achieved state-of-the-art performance in session-based
recommendations [14, 29].

Existing methods have the following limitations. First, when
facing different granularity of recommendation tasks, most of them
usually need to run a similar algorithm multiple times on different
granularity of item organizations, where each run builds users’
certain level profile vectors for the corresponding recommendation
task, i.e., item-level profiles for item recommendations and category-
level profiles for category recommendations. Correspondingly, the
training process of each level’s profile vectors is completely inde-
pendent from the others. However, users’ multiple-level interests
are closely correlated. Figure 2 illustrates a user’s hierarchical in-
terests, including an item level and two category levels, with her
historical behaviors. Resulting from the correlations between items
and categories, improvement on one recommendation task might
benefit others. However, to the best of our knowledge, such privi-
lege has not been explored in existing methods.

Second, only harvesting the signals of users’ item-level inter-
actions like ratings and clicks is insufficient. In most of the E-
commerce portals, users provide finely-granular responses such
as clicking and browsing different modules (e.g., comments and
pictures) of items, adding to shopping carts and purchases, which
are referred to as “micro-behaviors” [30, 41]. For example, the bot-
tom layer of Figure 2 presents a user’s historical micro-behaviors

in JD.com (one of the largest e-commerce site in the world), includ-
ing browsing a pair of Nike shoes from the homepage, searching
and reading specifications of iPhone 8, browsing Google Pixels 2
from the promoting page, searching iPhone X, reading comments
and adding it into the shopping cart for purchasing, etc. Obviously,
in comparison with users’ item-level responses, micro-behaviors
provide more detailed information, and preliminary studies [30, 41]
have demonstrated the advantage of modeling such detailed behav-
iors. However, to our best knowledge, none of existing methods has
leveraged such advantages to improve the performance of multiple-
level user profiling.

Third, generally users’ interests are dynamic and continuously
shifting. Some state-of-the-art methods like Time-LSTM [43] usu-
ally incorporate time intervals to track the interests shifting. How-
ever, we argue that besides the time intervals, the types of behaviors
and their dwell time are also extremely important. As shown in
Figure 2, we know that iPhone X is preferable to others, since vari-
ous micro-behaviors are performed on iPhone X with long dwell
time. We also observe that triggered by making an order on iPhone
X, the user’s interests on mobile phones drop sharply. Neglecting
to model behavior types and dwell times, Time-LSTM would be in
trouble to capture users’ detailed preferences and interests shifting.

To cope with these challenges, we present HUP, a hierarchical
user profiling framework to precisely formulate users’ real-time
interests on multiple organizations of items, targeting significant
performance gains in recommendation accuracy. In particular, it
models users’ multiple-level interests with a Pyramid Recurrent
Neural Networks, which typically consist of a micro layer, an item
layer, and multiple category recurrent neural network layers. The
micro layer harvests the detailed behavioral information and passes
it to the higher layers, which could abstract users’ hierarchical inter-
ests on the corresponding levels of the item organizations simulta-
neously. Furthermore, to sensitively track users’ real-time interests,
we introduce Behavior-LSTM in each layer, where a behavior gate is
designed to model the types and dwell time of behaviors. Extensive
experiments for item recommendation and category recommenda-
tion tasks have been conducted on two large-scale real e-commerce
datasets to demonstrate the effectiveness of our proposed approach.
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To sum up, our major contributions are listed as follows:
• We formulate a novel hierarchical user profiling problem,
which aims to precisely model users’ multiple level interests
simultaneously in E-commerce recommender systems.

• We present HUP, which exploits a Pyramid Recurrent Neu-
ral Networks for hierarchical user profiling based on users’
historical micro-behaviors.

• We propose Behavior-LSTM, which utilizes a behavior gate
to model the types and dwell time of behaviors for effectively
formulating users’ real-time interests.

• We conduct extensive experiments and prove that ourmethod
outperforms state-of-the-art baselines greatly on both item
recommendation and category recommendation tasks.

2 RELATEDWORK
2.1 User Profiling for Recommendations
Recommender systems [1] can recommend potentially interested
items to users for tackling the information overload problem. Ex-
isting works mainly fall into either content-based technology [26]
or collaborative filtering [23]. In both of them, user profiling plays
a critical role in formulating users’ interests or characteristics [5]
based on their behaviors in the past [18, 24, 33, 35, 38]. Classic col-
laborative filtering techniques like matrix factorization [20] learn
users’ static profiles from their rating preferences for estimation of
users’ interests in the future [38]. Furthermore, the evolutionary
user profiling can learn users’ dynamic profiles along time based on
the time changing factor model [19], vector autoregression [24], dy-
namic sparse topic model [8], etc. However, these methods mainly
focus on the item recommendation problem, where neither the
sequential information of users’ behaviors nor the hierarchy of the
user profiles could be considered.

2.2 RNN-based User Profiling
In recommender systems, recurrent neural networks (RNN) have
shown impressive advantages by modeling user’s sequential behav-
iors [14, 15, 17, 29]. For example, Hidasi et al. [14] introduced the
concept of session-based recommendations, and firstly proposed an
RNN-based framework to process user’s click sequences on items
in a session. Tan et al. [29] further improved its performance by
considering the data augmentation and temporal shift issues. Hi-
dasi et al. [15] integrated some content features extracted from
images and text into parallel RNN architectures, which demon-
strated their significant performance improvements over baselines.
Li et al. [22] proposed a neural attentive recommendation machine
that can identify users’ main purpose of their current session tar-
geting the performance gains. Beyond behaviors within a session,
Quadrana et al. [27] leveraged an additional GRU layer to model
users’ cross-session activities for session-based recommendations.
Recently, it has been found that the temporal information and users’
finely-granular interactions are significantly helpful for recommen-
dations. Wu et al. [32] leveraged timestamps of behaviors with a
long short-term memory (LSTM) autoregressive method. Zhu et al.
[43] proposed Time-LSTM, which used the time gates to model
the time intervals between behaviors. Wan and McAuley [30] ex-
ploited the effectiveness of the relations among users’ different
types of behaviors in recommendations. Zhou et al. [41] trained a

single layer RNN model with the micro-behaviors for product rec-
ommendation. However, this method only models user’s interests
in items and just exploits micro behaviors information as additional
input, which might lead to inferior performance. Our method uses
multi-layer Behavior-LSTM cells and attentions to explicitly model
the micro-behaviors information, which can solve both the item
recommendation and the hierarchical categories recommendation
problems.

In a word, most existing RNN-based methods fail to address the
hierarchical user profiling problem. In addition, to the best of our
knowledge, there are no explorations that could leverage the types,
dwell time and time intervals of the behaviors simultaneously in
an RNN framework for user profiling.

3 PROBLEM FORMULATION
In this section, we firstly introduce the background, notations and
definitions in this paper, and then formulate our problem formally.

3.1 Background
Hierarchical categories organize products of the E-commerce
sites in different granularity. The hierarchy is generally a tree struc-
ture, where each lower level category is an element of a higher
level one, and products are usually hung onto the finest categories
as the leaf nodes of the tree. For example, the first level category
“Electronics” might include some second level categories like “Tele-
phone” and “Accessory”, and “Mobile Phone” is a category in the
third and finest level belonging to “Telephone”.

Micro-behaviors are detailed unit interactions (e.g. reading the
detail comments, carting) of users with recommender systems. They
can provide rich information for indicating users’ timely interests,
including the type of behavior that a user conducts on an item, how
long a user dwells on an item and move to the next one [30, 41].
In this paper, we consider 10 types of micro behaviors, which are
shown in Table 1.

Micro behaviors Description

Home2Product Browse the product from the homepage
ShopList2Product Browse the product from the category page
Sale2Product Browse the product from the sale page
Cart2Product Browse the product from the carted page
SearchList2Product Browse the product from the searched results

Detail_comments Read the comments of the product
Detail_specification Read the specification of the product
Detail_bottom Read the bottom of page of the product

Cart Add the product to the shopping cart
Order Make an order

Table 1: List of micro-behaviors

3.2 Hierarchical User Profiling
Definition 3.1 (Hierarchical User Profiling). Hierarchical user pro-

filing aims to generate the micro-level, item-level and hierarchical
category-level profile vectors pmu ,piu and pcu = {p

(1)
cu , . . . ,p

(K )
cu }

respectively based on her micro-behaviors, which represent each
target user u’s interests in corresponding granularity.
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Definition 3.2 (Hierarchical Recommendations). LetU be a set of
users, V be a set of items, and C(1),C(2), . . . ,C(K ) be the K levels
hierarchy of the categories. The hierarchical recommendations
task aims to recommend a set of items V̂u and K set of categories
Ĉ
(1)
u , . . . , Ĉ

(K )
u to each target user u by maximizing the relevance

between u and her recommendations in different granularity.

4 HUP: A HIERARCHICAL USER PROFILING
FRAMEWORK

In this section, we introduce HUP, a hierarchical user profiling
framework for hierarchical recommendations. As illustrated in Fig-
ure 3, HUP utilizes a Pyramid Recurrent Neural Networks to extract
users’ hierarchical interests frommicro-behaviors at multiple scales.

4.1 The Input and Embedding Layers
Given a target user u, the input of our model is a sequence of
her micro-behaviors X = ⟨x1, x2, . . . , xN ⟩. The ith element xi =
(ti ,vi , ci ,bi ,di ,дi ) indicates that u performs a micro-behavior of
type bi on the item vi at the time ti , where vi belongs to multiple-
level categories ci = {c

(1)
i , c

(2)
i , ..., c

(K )

i }, the dwell time is di , and
the time interval between xi and xi+1 is дi . Here both dwell time
and time interval are real numbers. As previous work did [41],
we discretize them into several buckets respectively for embed-
ding. For each micro-behavior xi , the embedding layer firstly uses
embedding tables of items, categories, behavior types, dwell time
buckets and time intervals to transform vi , ci ,bi ,di ,дi into low-
dimensional dense vectors (i.e., evi ,eci ,ebi ,edi ,eдi ) respectively and
then concatenates these vectors into a single embedding vector ei .
The embedding tables are initialized as random numbers.

4.2 Pyramid Recurrent Neural Networks
Most of previously recurrent neural networks (RNN)-based recom-
mendation methods [5, 14, 15, 29, 41] use a single-layer RNN to
generate user profile vectors, which might not be capable of cap-
turing user’s hierarchical interests in different levels. To solve this
problem, inspired by the Spatial Pyramid Pooling-net (SPP-net) [12],
we propose a Pyramid Recurrent Neural Networks, which contains
a micro-level, an item-level and several category-level RNN layers
to abstract users’ hierarchical interests at multiple scales simulta-
neously.

The micro-level RNN layer aims to model users’ finest level in-
terests. The input at the time stamp i of this layer xMi comes from
the embedding layer, and the output of this layer YM is forwarded
to the item-level RNN layer for further calculations. The hidden
state is updated after taking each micro-behavior as input. The for-
mulations of the Micro-level RNN layer are defined in Equation 1.

XM = [xMi ] = [ei ], i = 1, 2, ...,N
YM = [yMi ] = RNNM (XM ), i = 1, 2, ...,N

(1)

The item-level RNN layermodels users’ item-level interests. The
input at the time stamp i of this layer xIi is the concatenation of
the item embedding evi and the output of the micro-level layer.
The hidden state is only updated after a user have transferred her
focuses from one item to another. Its output YI is forwarded to the

category-level RNN layers. The formulations of the Item-level RNN
layer are defined in Equation 2.

XI = [xIi ] = [evi ;yMi ]

YI = [yIi ] = RNN I (XI )
(2)

The category-level RNN layers formulate users’ category-level
interests. In the Kth category layer (the finest granularity of cat-
egories), the input at the time stamp i is x (K )

Ci
, which is the con-

catenation of the category embedding e(K )
ci and the output of the

item-level RNN layer calculated on items under this category. For
other higher-level category layers, the input at the time stamp i

of the kth level category layer is X (k )
C , which is the concatenation

of the category embedding e(k )ci in this layer and the output of the
(k − 1)th level category layer. In each layer, the hidden state is only
updated after a user has moved her focuses from one category to
another in this layer. The formulations of the category-level RNN
layers are defined in Equation 3.

X
(k )
C = [x

(k )
Ci

] =

{
[e
(k )
ci ;yIi ], k = K

[e
(k )
ci ;y(k−1)Ci

], k = 1, ...,K − 1

Y
(k )
C = [y

(k )
Ci

] = RNN
(k)
C

(
X
(k )
C

)
, k = 1, ...,K

(3)

4.3 Behavior-LSTM Cell
Generally users’ interests are dynamic and continuously shifting.
Time-LSTM [43] is a state-of-the-art method that incorporates time
intervals between users’ sequential purchases to address the interest
shifting problem. However, it cannot model the behavior type and
the dwell time information, which may lead to inferior performance.
We here propose Behavior-LSTM, a novel RNN layer that provides
an additional behavior gate to process the types and dwell time of
the behaviors, enabling HUP to track users’ real-time interests more
precisely. In particular, it is described in Figure 4 and formulated in
Equation 4:

It = σ (WI [ht−1, xt ] + bI ) Ft = σ (WF[ht−1, xt ] + bF)

Tt = σ (WT [xt , ∆t ] + bT ) At = σ (WA [xt , at ] + bA )

C̃t = tanh(WC[ht−1, xt ] + bC) Ct = Ft ⊙ Ct−1 + It ⊙ Tt ⊙ At ⊙ C̃t

Ot = σ (WO [ht−1, xt ] + bO ) ht = Ot ⊙ tanh(Ct )
(4)

where I, F ,T ,A and O are the input, forget, time, behavior and
output gates, C and h are the cell state and hidden state vectors,
WI,WF,WT ,WA,WC andWO are weight matrices,bI ,bF ,bT ,bA ,
bC and bO are the biases, respectively. The input of the Behavior-
LSTM is a tuple (xt ,at ,∆t ), where xt is the embedding vector of
the input at the time stamp t , at is the embedding vector of the
behavior type or dwell time information, and ∆t is the embedding
vector of time interval between current behavior and the next one.

In Behavior-LSTM, the time gateT estimates howmuch informa-
tion that should maintain or pass to the next state, and the behavior
gateA calculates the importance of current behavior with the meta
information of the behavior. In particular, such meta information
of the behaviors involves two aspects: their types and users’ dwell
time. In particular, the behavior gate actually only processes the
types of micro-behaviors in the micro level RNN layer. It is because
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Figure 3: The architecture of the HUP. It uses a Pyramid Recurrent Neural Networks, which is consisted of a micro layer,
an item layer, and hierarchical category recurrent neural networks layers, to extract users’ hierarchical profile at multiple
scales. The profiles represent users’ real-time interests in items and hierarchical categories, based on which the most relevant
categories and items can be recommended to users.

+X

t-1

Input GateForget Gate Output GateBehavior Gate

tanh

σσ σσ

X

tanh σ

X

t-1

t

tt

xt at t

Time Gate

t

t

Figure 4: The architecture of the Behavior-LSTM. It has a
behavior gate A and a time gate T , where A models users’
behavior information in micro behaviors, and T captures
the time intervals between users’ micro behaviors.

most of micro-behaviors are instant responses and we could not
get their dwell time, but their types are extremely important for
users’ interest modeling. In the item-level and hierarchical category-
level RNN layers, this gate models the dwell time on the items or
categories. That is because the dwell time varies significantly in
items and categories and is very informative in presenting users’
interests.

4.4 The Attention Layers
The attention mechanism [2] is a common technique in deep learn-
ing. Usually, it is able to mitigate long-term dependency issues as
well as provide interpretations, which is extremely important in
real-world recommender systems. In particular, an attention layer

takes the output sequence Y = [y1,y2, ...,yT ] of an RNN as input
and return a context vector s . Let yi be a user’s interests at time
stamp i . The context vector s of each attention layer is calculated as
a weighted sum of the interests vectors among all the time stamps,
which is formulated formally in Equation 5.

s =
T∑
i=1

αiyi ; αi =
exp(ei )∑T

k=1 exp(ek )
; ei = f (yi ,yT ,ai ) (5)

HUP has multiple attention layers, where each is directly fol-
lowed by its corresponding RNN layer and therefore referred to as
micro, item and category level attention layers respectively. The
context vectors from these attention layers are denoted as sm , si
and sc = {s

(1)
c , s

(2)
c , ..., s

(K )
c } respectively. The attention signal ai

represents the type of micro-behaviors in micro-level attention
layer, and the dwell time in both the item and the category level
attention layers. f is an alignment model, which scores the impor-
tance of yi based on the hidden state yi , last hidden state yT and
attention signal ai . In order to achieve abundant expressive ability,
we design the alignment model f as two-layers feedforward neural
networks, which is jointly trained in the model.

4.5 The Fully Connected Layers
The fully connected neural network layers transform users’ con-
text vectors from the attention layers into hierarchical user pro-
files. Specifically, they transform users’ micro-level, item-level and
category-level context vectors sm , si and sc = {s

(1)
c , s

(2)
c , ..., s

(K )
c }

into real-time user profile vectorspm ,pi andpc = {p
(1)
c ,p

(2)
c , ...,p

(K )
c }

in corresponding levels.
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4.6 Loss Function
Deep learning models like convolutional neural networks [21] and
recurrent neural networks [9] usually use softmax as the last layer
for prediction. However, in real-world recommendation scenarios,
the possible items can be millions or billions, and thus such calcu-
lations on all items is prohibitively expensive. Given a user u and
her sequential activities Xu , we try to maximize the cosine simi-
larity between the user’s real-time profile vectors (i.e. pm , pi and
pc = {p

(1)
c , ...,p

(K )
c }) and the embedding of the ground-truths, on

which the target user will act in the next time stamp N + 1(i.e., the
next itemvN+1 for micro and item level layers or the next hierarchi-
cal categories cN+1 = {c

(1)
N+1, ..., c

(K )

N+1} for category-level layers).
Similar strategy has achieved success in recommendation systems
[14, 29, 41]. Let LMu , LIu and LCu = {L

(1)
Cu
. . . L

(K )

Cu
} be the losses of

the micro-level, item-level and category-level layers for the target
user u. The loss of the micro-level layers LMu can be calculated as
Equation 6, where evN+1 is the embedding of the ground-truth item
vN+1. The losses of the item and category levels can be calculated
similarly.

LMu = cosine_proximity(pm, evN+1 ) = −
pm · evN+1

∥pm ∥∥evN+1 ∥
(6)

The total loss L is the weighted sum of losses in micro-level, item-
level and category-level layers of all users. Formally it is defined as
follows:

L = λlM

∑
u ∈U

LMu + λlI

∑
u ∈U

LIu + λlC

∑
u ∈U

K∑
k=1

L
(k )
Cu

(7)

where λlM , λlI and λlC are the coefficients of the losses in the micro-
level, item-level and multiple category-level layers respectively.

5 EXPERIMENTAL SETTINGS
5.1 Hierarchical Recommendations
We evaluate our proposed HUP method on two tasks: item recom-
mendations and category recommendations. Given a target user
u and a sequence of her micro-behaviors, HUP generates a hierar-
chical profile vectors for u, which represent the user’s interests in
items and hierarchical categories respectively. At the same time, the
embedding vectors of the items and multiple-level categories can
be learned from HUP as well during the training stage. The item
recommendation process is as follows. At each recommendation
stage, as previous work did [41], we first retrieve a set of candidate
items, which are similar to at least one of users’ browsed items in
terms of cosine similarity on embeddings. We then calculate the
cosine similarity between each candidate item embedding and the
user’s item-level profile vector pi as ranking score. Finally, we rank
the candidate items and select top items for recommendations. The
category recommendations are performed in a similar manner.

5.2 Dataset
To evaluate the effectiveness of HUP, we utilize the benchmark
“JD Micro Behaviors Datasets" [41], which are collected from a
large e-commerce site JD.com. The datasets contain users’ micro-
behaviors in two product categories “Appliances” and “Computers”,
where each line is a sequence of a user’s micro behaviors in a session.

The statistics of the datasets are shown in Table 2. In each dataset,
we sort all the sessions in chronological order, and use 70%, 10%,
20% sessions as the training, validation and testing set respectively.
As previous work did [41] , the last item and the corresponding
finest category in each session are used as ground truth.

Dataset JD-Applicances JD-Computers

Users 6,166,916 3,191,573
Products 169,856 419,388
Categories 103 93

Number of Micro behaviors 176,483,033 88,766,833
Table 2: Statistics of the Datasets

5.3 Baseline Methods
Wemake a comparative study of our approach HUP with the follow-
ing methods, where the last three are state-of-the-art RNN-based
methods that have demonstrated excellent performance recently.

• POP recommends the most popular items to each user. This
simple method is a commonmechanism in recommender sys-
tems. This simple method has been proven to be comparable
to some sophisticated recommender algorithms [6].

• BPR-MF implements matrix factorization with the Bayesian
personal ranking loss. It is one the most popular methods
for recommendations [13, 20, 28].

• Item-KNN is a popular item-based recommender algorithm
that uses similarities between items for recommendations
[7]. In particular, the similarity is calculated with sim(i, j) =

Freq(i j)
Freq(i)×Freq(j) , where Freq(i) is the number of sequences
that an item i shows up [7].

• Word2vec makes recommendations based on embedding of
the last item in the sequence [10] by Word2vec [25]. It has
been proved to be effective in recommendation [10].

• Word2vec-avg makes recommendations based on the aver-
age embedding of all items in the sequence [41].

• RIB [41] is a state-of-the-art method that uses RNN and the
attention mechanism to model user’s micro-behaviors for
recommendation .

• Time-LSTM [43] integrates the time interval information
between user’s item-level behaviors into LSTM.

• S-HRNN [27] utilizes a hierarchical GRUs to model users’
interactions across sessions.

5.4 Evaluation Metrics
We use two widely used metrics Recall@K andMRR@K [14, 27, 29,
41] to compare our model with the baselines. For the item recom-
mendation problem, as previous work did [41], we use Recall@20
andMRR@20 for evaluation. For category recommendation, we use
Recall@5 andMRR@5 instead because user’s interests in categories
are relatively stable. We have implemented our framework HUP
with Keras 2.2. The embedding size of items behaviors, categories,
dwell time and time intervals are set to 30, 5, 8, 5 and 5 respectively,
the batch size is 128 and the hidden size of the PRNN layers is 100.
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Model
Applicances Computers

Item Rec Category Rec Item Rec Category Rec
Recall@20 MRR@20 Recall@5 MRR@5 Recall@20 MRR@20 Recall@5 MRR@5

POP 3.1 0.5 45.0 24.0 3.4 1.0 44.0 28.6
BPR-MF 13.1 3.1 55.4 35.0 11.3 3.0 70.1 42.9
Item-KNN 42.9 9.6 87.0 43.1 29.8 6.8 68.8 32.7
Word2vec 38.5 8.8 91.1 90.6 28.4 6.2 84.1 81.6
Word2vec-avg 38.7 13.1 86.7 80.0 24.4 7.1 81.0 71.5
RIB 47.6 14.3 92.9 91.2 28.6 7.6 88.0 83.0
Time-LSTM 49.4 18.9 93.4 91.3 32.8 10.9 88.7 83.9
S-HRNN 49.8 19.2 92.6 90.4 33.0 11.0 88.2 82.9
HUP 51.5∗ 20.5∗ 93.8∗ 91.6∗ 35.0∗ 12.0∗ 89.2∗ 84.4∗

HUP-NoMicro 49.6 19.3 93.1 91.1 32.6 10.6 88.2 83.6
HUP-LSTM 50.1 19.6 93.2 91.3 32.7 10.7 88.3 83.6
HUP-TLSTM 50.9 20.0 93.5 91.3 33.8 11.3 88.8 84.0
HUP-NoAtt 50.3 19.7 93.6 91.5 33.8 11.4 89.1 84.2
HUP-Single 50.5 19.7 93.4 91.5 33.9 11.4 88.6 83.8

Table 3: Performance of different methods for category recommendation and item recommendation on two datasets. “∗” indi-
cates the statistically significant improvements (i.e., two-sided t -test with p < 0.01) over both the best baseline and all variants.

6 EXPERIMENTAL RESULTS
6.1 Comparison with Baselines
Table 3 shows the experimental results of different methods for the
item and category recommendation tasks on the Applicances and
Computers datasets. We conducted significance testing (t-test) on
the improvements of our approaches over all baselines. “∗” denotes
strong significant divergence with p-value<0.01. From the table we
can find that:

• HUP significantly outperforms state-of-the-art methods for
the two tasks on both datasets. Specifically, for item rec-
ommendation, HUP outperforms state-of-the-art method by
3.4%, 6.1% in Recall@20 and 6.7%, 9.1% inMRR@20 for the
“Appliances” and “Computers" datasets respectively. For cate-
gory recommendation, our performance gains are relatively
subtle, as this problem is easier than item recommendation
resulting from the denser dataset.

• The POP and BPR-MF methods perform the worst.
• Three RNN-based methods including RIB, Time-LSTM and
S-HRNN significantly overcome conventional baselines.

• Bymodeling the temporal information, Time-LSTM achieves
better performance than RIB.

6.2 Effectiveness of Components in HUP
To systematically validate the effectiveness of each component in
HUP, we implement the following variants of HUP, each eliminating
a specific model component.

• HUP-NoMicro. This variant does not use micro behaviors
for modeling. It only uses the item-level and category-level
RNN layers based on users’ interactions with items and cat-
egories.

• HUP-LSTM. This variant uses LSTM in the PRNN layers.
The time-related mechanism and type of micro-behaviors
are absent in the method.

• HUP-TLSTM. This variant uses Time-LSTM [43] in the
PRNN layers, where only the time gates are used in the
RNN layer to model the time interval among behaviors.

• HUP-NoAtt. This variant removes the attention layers from
HUP.

• HUP-Single. This variant solves each recommendation task
independently, which includes a single Behavior-LSTM layer
and an attention layer in the framework.

The performance of different variants are shown in the bottom
part of Table 3. From the table, we can see that the full version of
HUP outperforms all of the variants and find that:

(1) Pyramid Recurrent Neural Networks. Comparing with
the HUP-Single method, the performance improvement demon-
strate the effectiveness of PRNN.

(2)Micro-behaviors.The comparisonwithHUP-NoMicro demon-
strates the importance of micro-behaviors in HUP. We also notice
that HUP-NoMicro obtains the worst performance in all metrics.

(3) Temporal mechanisms. Evidenced by the performance
loss of HUP-LSTM against HUP-TLSTM, and HUP, temporal in-
formation is necessary in modeling user interests. Furthermore,
sophisticated temporal mechanisms could receive improved perfor-
mance. For example, equipped with time gates, HUP-TLSTM can
achieve better performance than HUP-LSTM; HUP outperforms
HUP-TLSTM by further using Behavior gates and time-mechanisms
in the attention layers.

(4) Attention layers. As demonstrated in our experiments, at-
tention layers can significantly improve the performance of HUP
against the HUP-NoAtt variant. Meanwhile, attention mechanisms
also help interpret and visualize the recommendation results as
well. We will show that in the later case study section.

6.3 Trade-off in Loss Function
As formulated in Equation (7), the loss function is composed of
three components. According to our experiments, HUP achieves

Technical Presentation  WSDM ’20, February 3–7, 2020, Houston, TX, USA

229



Input

Category Item
Dwell 
Time

Micro Behaviors

ShopList2Product

Detail_comments

ShopList2Product

Search2Product

Midea Electric 
Heating Lunch Box

MZ-LYH18-A

Midea Air fryer 
MF-TN20B

Midea 
Electromagnetic 

Oven C21-WK2102

Bear Electric Kettle 
YSH-B18T1

Bear Yogurt Maker 
SNJ-5012 and Bear 
Ice Cream Machine 
BQL-A12G1  Bundle

Bear Egg Cooker

36s

8s

12s

14s

13s

11s

Attention

RIB HUP

Multi-function 
Pot

Yogurt Maker 
and Ice Cream 

Machine Bundle

Egg Cooker

Rank 2ndNot in top 20

low high

Item Recommendation Category Recommendation

Ground truth Top K Recommendation

Time 
Interval

Search2Product

ShopList2Product

Cart

Detail_comments

ShopList2Product

Cart

ShopList2Product

Detail_specifications

Bear Yogurt Maker 
SNJ-560 and Bear 
Toaster DSL-606

discounted Bundle

14s

Electromagnetic 
Oven

Electric Kettle

Yogurt Maker
and Toaster 

Bundle

2s

87s

14s

36s

2s

2s

HUP-TLSTM RIB HUPHUP-TLSTM

Rank 3rdRank 5thRank 4th Rank 5th

Micro behaviors Attention
Item Attention
Category Attention

4s

1s

3s

9s

Figure 5: A case study in an E-commerce Recommender Systems

0.1 0.3 0.5 0.7 0.9
λlI

0.510

0.514

0.518

It
em

R
ec
al
l@
2
0

0.1 0.3 0.5 0.7 0.9
λlI

0.203

0.205

0.207

It
em

M
R
R
@
2
0

0.1 0.3 0.5 0.7 0.9
λlI

0.937

0.938

0.939

C
at
eg
or
y
R
ec
al
l@
5

0.1 0.3 0.5 0.7 0.9
λlI

0.915

0.916

0.917

C
at
eg
or
y
M
R
R
@
5

Figure 6: Performance of HUP with λlI which is the weight
of the losses of item-level RNN layer.

the best performance when λlM = 0. Because the micro-level RNN
layer is useful for predicting the next micro-behaviors based on
the historical ones, but does not directly affect the predictions of
the items and categories. However, this layer can be used to inter-
pret the real-time effectiveness of the historical micro-behaviors
for each user. Without loss of generality, we set λlC = 1 − λlI and
0 ≤ λlI ≤ 1. Therefore we only need to tune λlI in the loss func-
tion for a trade-off between item and category recommendation
tasks. Figure 6 shows the performance of HUP with respect to dif-
ferent values of λlI on the “Applicances” dataset. The curves on the
“Computers" dataset are similar and thus absent from this paper for
satisfying the requirement of the page limit. From the figure we can
see that the metrics for item recommendation decline when λlI is
getting lower while the trends are completely opposite for category

recommendation. To balance the performance of the user profiles
in different levels, we set λlI and λlC both to 0.5 in the experiments.

6.4 Case Study
Figure 5 demonstrates a real case from the “Appliances” dataset to
explain how HUP works. The last 12 micro-behaviors on 7 items
from 6 categories are listed in the figure. The last item is the ground-
truth, which spans 2 micro-behaviors. The right side of the figure
visualizes the attention weights of these micro-behaviors from our
proposed HUP, HUP-TLSTM (a variant of HUP) and RIB (a state-of-
the-art baseline). From the figure we can see that:

(1) The attention weights of the micro behaviors “Cart” and
“Search2Product” are higher than others for all methods, which
means these two micro behaviors are important for modeling user
interests.

(2) The time interval between the browsing behaviors on the
item “Bear Electric Kettle" and the next one is 36 seconds. As the
attention weights shown, HUP-TLSTM and HUP pay much less
attentions to the first 4 items than RIB resulting from the time gates.
It illustrates their ability of forgetting history behaviors happened
long time ago by modeling the time interval information.

(3) Time interval between the browsing behaviors on “Yogurt
Maker and Ice Cream Machine” and “Bear Egg Cooker” is merely 2
seconds. This number between “Bear Egg Cooker” and the next item
(ground-truth) is also 2 seconds. Both are very short. HUP-TLSTM
retains such history information and still pays much attention to
these two items resulting from the short time interval. However,
HUP can notice the fact that the user has already added these two
items to cart. It thus reduces the importance on these two items and
their categories, and then chooses an item from a related category
(Yogurt Maker and Toaster Bundle) for return.
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7 CONCLUSIONS
In this paper, we investigate the hierarchical user profiling problem,
aiming to model users’ real-time interests in different granularity.
It is crucial for multiple-level recommendation tasks, such as item,
category, topic, theme recommendations and so on. We hence pro-
pose HUP, a hierarchical user profiling framework, which leverages
a Pyramid Recurrent Neural Networks to abstract users’ interests in
different granularity simultaneously from users’ micro-behaviors.
To better model users’ real-time interests, we design Behavior-
LSTM cells to integrate the meta information of behaviors (e.g. the
type, dwell time and time interval information) into HUP. Exten-
sive experiments on two real-world E-commerce datasets verify
the effectiveness of our method for both item and category recom-
mendation tasks.

Resulting from its effectiveness and flexibility, our framework
can be widely used to recommend items (e.g. movies, music, news)
and corresponding categories (e.g. science fiction films, rock music,
breaking news) in various web services (e.g. videos or music sharing
sites, social networks).
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